IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v292y2024ics0378377423005188.html
   My bibliography  Save this article

Dynamics of soil water and nitrate within the vadose zone simulated by the WHCNS model calibrated based on deep learning

Author

Listed:
  • Guo, Qinghua
  • Wu, Wenliang

Abstract

Excessive application of water and nitrogen fertilizer during farmland management practices leads to serious groundwater nitrate pollution. A field experiment was conducted during the spring maize growth period in Alxa, Inner Mongolia, China. The soil Water Heat Carbon Nitrogen Simulator (WHCNS) model was calibrated by the ensemble smoother method (ES(DL)) based on the field experiment. Then dynamics of soil water content, soil water percolation flux, soil nitrate concentration and soil nitrate leaching flux were simulated with the calibrated WHCNS model under different water and nitrogen fertilization treatments within the vadose zone. The main conclusions are as follows: ES(DL) is feasible for the calibration of the WHCNS model. RMSE_Maximum a posteriori (RMSE_MAP) of soil water content are 0.0301 cm3 cm−3 and 0.0302 cm3 cm−3 for model calibration and model validation, respectively. RMSE_MAP of soil nitrate concentration are 5.49 mg N kg−1 and 3.86 mg N kg−1 for model calibration and model validation, respectively. Both average soil nitrate concentration and average nitrate leaching flux increase with increasing irrigation amount under the same nitrogen fertilization level for the depths of 1.2 m and 1.8 m. However, average soil nitrate concentration decreased and leaching flux increased with increasing irrigation amount under the same nitrogen fertilization level for the depths of 10 m and 20 m. The study of nitrate dynamics in the deep vadose zone contributes to better understand the procedure of nitrate pollution in groundwater caused by excessive water and nitrogen application.

Suggested Citation

  • Guo, Qinghua & Wu, Wenliang, 2024. "Dynamics of soil water and nitrate within the vadose zone simulated by the WHCNS model calibrated based on deep learning," Agricultural Water Management, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:agiwat:v:292:y:2024:i:c:s0378377423005188
    DOI: 10.1016/j.agwat.2023.108653
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423005188
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108653?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:292:y:2024:i:c:s0378377423005188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.