IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v292y2024ics0378377423005164.html
   My bibliography  Save this article

Impact of ET and biomass model choices on economic irrigation water productivity in water-scarce basins

Author

Listed:
  • Hazimeh, Rim
  • Jaafar, Hadi

Abstract

Using Economic Irrigation Water Productivity (EIWP) as an indicator for on-farm irrigation decision-making is of utmost importance in addressing the challenges posed by poor policies in managing agricultural water use, particularly in water-scarce basins. Various modeling systems are available for quantifying crop actual evapotranspiration (ETa) and biomass needed for measuring the economic output obtained from each unit of irrigation water utilized. The difference in ETa and biomass estimates between the modeling systems could translate into a difference in EIWP outcomes, which influences the basin-wide irrigation water management. In this paper we examine the influence of selecting different ETa and biomass models, particularly the hybrid single-source energy balance HSEB, the Global Field-Scale Crop Yield and ET Mapper in Google Earth Engine GYMEE, and FAO’s WaPOR V2, on evaluating EIWP on a basin-wide level. The method includes combining remote sensing and economic data to compare variability in ETa, biomass, and EIWP values derived from HSEB, GYMEE, and WaPOR. The approach is demonstrated with field survey data from the upper hydrologic unit of Lebanon’s largest catchment, the Litani River Basin, in its three productive districts Baalbak, Zahleh, and West Bekaa for the year 2021. Field-scale mean monthly ETa and biomass estimates for all crops, obtained from both models, are very comparable. On a district level, the results reveal a reasonable model agreement for the four crops in the estimation of ETa with moderate to strong correlation (0.75 < r < 0.95). WaPOR consistently produces slightly higher mean ETa values for potato, wheat, and table grapes when compared to HSEB. Both models reasonably agree when estimating biomass for the four crops with high correlation (r > 0.9). Contrary to the ETa results, the GYMEE model consistently estimates slightly higher mean biomass values for all crops compared to WaPOR. The EIWP values produced by both models consistently indicate that potato holds the highest EIWP across all districts, followed by onion, table grapes, and wheat. The mean district HSEB-GYMEE model derived EIWPs are slightly higher than those derived from the WaPOR model for most crops. For EIWP obtained from HSEB-GYMEE, mean EIWP for potato is 12 times higher than that of wheat. As for that obtained from WaPOR, mean EIWP for potato is 10 times higher than that of wheat. The paper establishes a basis for future research on the application of remote sensing models in addressing water-stressed and socioeconomically challenged basins, with the potential to inform strategic irrigation management decisions based on model selection.

Suggested Citation

  • Hazimeh, Rim & Jaafar, Hadi, 2024. "Impact of ET and biomass model choices on economic irrigation water productivity in water-scarce basins," Agricultural Water Management, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:agiwat:v:292:y:2024:i:c:s0378377423005164
    DOI: 10.1016/j.agwat.2023.108651
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423005164
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108651?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:292:y:2024:i:c:s0378377423005164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.