IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v291y2024ics0378377423005115.html
   My bibliography  Save this article

Data assimilation of soil moisture and leaf area index effectively improves the simulation accuracy of water and carbon fluxes in coupled farmland hydrological model

Author

Listed:
  • Wang, Weishu
  • Rong, Yao
  • Zhang, Chenglong
  • Wang, Chaozi
  • Huo, Zailin

Abstract

Real time status of farmland hydrology and crop growth is essential for agricultural management. Data assimilation is a common method to improve the prediction accuracy of the model by fusing observed and simulated data. For the farmland hydrological processes, evapotranspiration (ET) and net ecosystem productivity (NEP) are widely concerned and strongly affected by crop growth and soil moisture. In this study, data assimilation for soil water content (SWC) and leaf area index (LAI) was combined with a coupled farmland hydrological model, and the potential of Kalman filter (KF) and ensemble Kalman filter (EnKF) methods to enhance model accuracy were explored. Furthermore, the impact of observation density of assimilated data and different assimilation strategies (single-factor or dual-factor assimilation) were analyzed. The findings revealed that both KF and EnKF methods effectively improved the simulation ability of SWC and LAI. When assimilation was performed daily, KF could obtain results comparable to EnKF with assimilation efficiency coefficient (Eff) exceeded 70%. However, with a reduced assimilation frequency for LAI to ten-day interval, EnKF exhibited superior applicability, demonstrating a 13% increase in Eff. The assimilation of soil moisture could positively affect the simulation results of ET with Eff close to 10%, and the assimilation of LAI could improve the simulation accuracy of NEP with Eff close to 15%. Overall, dual-factor assimilation proved to have a more substantial impact than single-factor, even reducing the frequency to ten-day interval. The sensitivity analysis showed that the coupling model could resist the influence of the preset observation error in the filter, with data assimilation effectively mitigating the influence of parameter errors in coupling model. These analyses supply an effective basis to deepen the understanding of improve real time simulation accuracy of farmland hydrological model with data assimilation.

Suggested Citation

  • Wang, Weishu & Rong, Yao & Zhang, Chenglong & Wang, Chaozi & Huo, Zailin, 2024. "Data assimilation of soil moisture and leaf area index effectively improves the simulation accuracy of water and carbon fluxes in coupled farmland hydrological model," Agricultural Water Management, Elsevier, vol. 291(C).
  • Handle: RePEc:eee:agiwat:v:291:y:2024:i:c:s0378377423005115
    DOI: 10.1016/j.agwat.2023.108646
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423005115
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108646?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:291:y:2024:i:c:s0378377423005115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.