IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v291y2024ics0378377423004857.html
   My bibliography  Save this article

Estimating reference crop evapotranspiration using optimized empirical methods with a novel improved Grey Wolf Algorithm in four climatic regions of China

Author

Listed:
  • Dong, Juan
  • Xing, Liwen
  • Cui, Ningbo
  • Guo, Li
  • Liang, Chuan
  • Zhao, Lu
  • Wang, Zhihui
  • Gong, Daozhi

Abstract

Accurate estimation of reference crop evapotranspiration (ETo) is crucial for agricultural water management. As the simplified alternatives of the Penman-Monteith equation, empirical methods have been widely recommended worldwide. However, its application is still limited to parameters localization varied with geographical and climatic conditions, therefore developing an excellent optimization algorithm for calibrating parameters is very necessary. Regarding the above requirement, the present study developed a novel improved Grey Wolf Algorithm (MDSL-GWA) to optimize the most recommended ones among three types of ETo methods. After the optimization performance comparison among Least Square Method (LSM), Genetic Algorithm (GA), Grey Wolf Algorithm (GWA), and MDSL-GWA in four climatic regions of China, this study found that the Priestley-Taylor (PT) method was the best radiation-based (Rn-based) method and achieved better performance in temperate continental region (TCR), mountain plateau region (MPR), and temperate monsoon region (TMR) than other types. While the temperature-based (T-based) Hargreaves-Samani (HS) method performed best in subtropical monsoon region (SMR), further attaching better performance among the same type in TMR and TCR, while the Oudin method was the best T-based method in MPR. Moreover, the Romanenko method was better humidity-based (RH-based) in TCR and MPR, whereas the Brockamp-Wenner method exhibited higher in SMR and TMR. Furthermore, despite intelligence optimization algorithms significantly enhancing original ETo methods, the MDSL-GWA achieved best performance and outperformed other algorithms by 4.5–29.6% in determination coefficient (R2), 4.7–27.3% in nash-sutcliffe efficient (NSE), 3.7–44.4% in relative root mean square error (RRMSE), and 3.1–56.2% in mean absolute error (MAE), respectively. After optimization, the MDSL-GWA-PT was the most recommended ETo method in TMR, TCR, and MPR, and the median values of R2, NSE, RRMSE, and MAE ranged 0.907–0.958, 0.887–0.925, 0.083–0.103, and 0.115–0.162 mm, respectively. In SMR, the MDSL-GWA-HS produced the best ETo estimates, with median values of R2, NSE, RRMSE, and MAE being 0.876, 0.843, 0.112, and 0.146 mm, respectively. In summary, this study recommended the best ETo method and algorithms using accessible data in four climatic regions of China, which is helpful for decision-making in effective management and utilization of regional agricultural water resources.

Suggested Citation

  • Dong, Juan & Xing, Liwen & Cui, Ningbo & Guo, Li & Liang, Chuan & Zhao, Lu & Wang, Zhihui & Gong, Daozhi, 2024. "Estimating reference crop evapotranspiration using optimized empirical methods with a novel improved Grey Wolf Algorithm in four climatic regions of China," Agricultural Water Management, Elsevier, vol. 291(C).
  • Handle: RePEc:eee:agiwat:v:291:y:2024:i:c:s0378377423004857
    DOI: 10.1016/j.agwat.2023.108620
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423004857
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108620?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:291:y:2024:i:c:s0378377423004857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.