IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v290y2023ics0378377423004389.html
   My bibliography  Save this article

No-tillage mulch with leguminous green manure retention reduces soil evaporation and increases yield and water productivity of maize

Author

Listed:
  • Wang, Feng
  • Wang, Yulong
  • Lyu, Hanqiang
  • Fan, Zhilong
  • Hu, Falong
  • He, Wei
  • Yin, Wen
  • Zhao, Cai
  • Chai, Qiang
  • Yu, Aizhong

Abstract

In the Hexi oasis irrigation area, green manure improves the use efficiency of soil, light, heat and precipitation resources during a long fallow period (from the wheat harvest to the later maize sowing). The work aims to determine the optimal utilization patterns of green manure for reducing maize evapotranspiration (ETc) reduction and improvement of grain yield (GY) and crop water productivity (WPc). A two-year field experiment was conducted at a research station in the Shiyang River Basin (Gansu, China) using a completely randomized design with three replications. Five treatments were involved in this study: (i) conventional tillage fallow and leisure without green manures as a control (CT), (ii) tillage with total of green manures incorporated in the soil (TG), (iii) no-tillage with total green manures mulched on soil surface (NTG), (iv) tillage with root incorporated in the soil and aboveground removal of green manures removed (T), (v) no-tillage with aboveground manures removed (NT). The results showed that the soil bulk density was reduced by 1.4–8.9%, and field capacity was increased by 1.0–4.5% under green manure returning. The soil water storage (SWS) at 0–100 cm soil layer was improved during the maize growing season. Compared with CT, maize evapotranspiration (ETc) was significantly reduced by 7.4% due to the significant decline in soil evaporation (E) by 12.8% under the NTG treatment. On average, the maximum root biomass (RBmax) (26.8 g plant–1), aboveground biomass (ABmax) (421.1 g plant–1), GY (15085.5 kg ha−1) and WPc (3.2 kg m−3) of NTG were significantly increased by 79.7%, 25.3%, 34.3% and 39.2%, respectively. Rising RB and falling ineffective ETc contribute to the increase in GY and WPc. For the spring wheat-maize rotation system, NTG is an ideal green manure returning method for achieving high yield and WPc in the arid oasis irrigation area.

Suggested Citation

  • Wang, Feng & Wang, Yulong & Lyu, Hanqiang & Fan, Zhilong & Hu, Falong & He, Wei & Yin, Wen & Zhao, Cai & Chai, Qiang & Yu, Aizhong, 2023. "No-tillage mulch with leguminous green manure retention reduces soil evaporation and increases yield and water productivity of maize," Agricultural Water Management, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:agiwat:v:290:y:2023:i:c:s0378377423004389
    DOI: 10.1016/j.agwat.2023.108573
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423004389
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108573?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:290:y:2023:i:c:s0378377423004389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.