IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v289y2023ics0378377423004249.html
   My bibliography  Save this article

Integrating multisource information to delineate oasis farmland salinity management zones in southern Xinjiang, China

Author

Listed:
  • Bai, Jianduo
  • Wang, Nan
  • Hu, Bifeng
  • Feng, Chunhui
  • Wang, Yuzhen
  • Peng, Jie
  • Shi, Zhou

Abstract

Soil salinization and the shortage of water resources have become important factors affecting the sustainable development of agriculture in the southern Xinjiang. Agricultural flooding in winter or spring is the main means to reduce the damage of secondary soil salinization in southern Xinjiang. However, the spatial heterogeneity of soil salinization is not considered in previous irrigation strategy. Excessive irrigation always leads to a serious waste of agricultural water resources. Irrigation zones delineation based on the degree of soil salinization is beneficial for the management of agricultural salinized land and the improvement of water use efficiency in arid areas. This study used 1599 sets of apparent electrical conductivity (ECa) data obtained before winter irrigation and after crop harvest to characterize soil salinity directly. And the spatial heterogeneity of soil salinity in the study area was analyzed directly using ECa values and statistical as well as geostatistical methods. Three main variables obtained from apparent electrical conductivity measurements (EC0.375, EC0.75, EC1.5), vegetation information (NDVI, GNDVI, SAVI), which indirectly reflected the degree of salinity, and environmental factors (Clay, Sand, Silt, DEM), which affecting the distribution of salinity, were used as auxiliary variables. Four zoning models including soil information, soil + vegetation information, soil information + environmental factors and soil + vegetation information + environmental factors were constructed. A multi-scale segmentation algorithm was used to delineate for four zone patterns and evaluate the results of management zones based on the different information. The results showed that there was a strong spatial heterogeneity of soil salinity in the study area, with the coefficients of variation of ECa all higher than 74 %. But the mean of coefficient of variation intra-zone in each zone after delineation was less than 24 %, which was significantly lower than the value before delineation. The zoning result based on only soil information was more fragmented than other zoning results, and the homogeneity intra-zone and heterogeneity among zones were both lower. This result was not desirable to the development and effective implementation of water resource allocation. Management zones delineation with additional vegetation information or environmental factors showed a better zoning result. Delineation using multisource data of soil, vegetation information and environmental factors not only had the highest homogeneity intra-zone and heterogeneity among zones, but also facilitated the implementation of variable-rate irrigation. Consequently, salinity management zoning, which integrates soil, vegetation information and environmental factors, will facilitate the implementation of efficient irrigation with variable irrigating rate.

Suggested Citation

  • Bai, Jianduo & Wang, Nan & Hu, Bifeng & Feng, Chunhui & Wang, Yuzhen & Peng, Jie & Shi, Zhou, 2023. "Integrating multisource information to delineate oasis farmland salinity management zones in southern Xinjiang, China," Agricultural Water Management, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423004249
    DOI: 10.1016/j.agwat.2023.108559
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423004249
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108559?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fontanet, Mireia & Scudiero, Elia & Skaggs, Todd H. & Fernàndez-Garcia, Daniel & Ferrer, Francesc & Rodrigo, Gema & Bellvert, Joaquim, 2020. "Dynamic Management Zones for Irrigation Scheduling," Agricultural Water Management, Elsevier, vol. 238(C).
    2. Khasanov, Sayidjakhon & Li, Fadong & Kulmatov, Rashid & Zhang, Qiuying & Qiao, Yunfeng & Odilov, Sarvar & Yu, Peng & Leng, Peifang & Hirwa, Hubert & Tian, Chao & Yang, Guang & Liu, Hongguang & Akhmato, 2022. "Evaluation of the perennial spatio-temporal changes in the groundwater level and mineralization, and soil salinity in irrigated lands of arid zone: as an example of Syrdarya Province, Uzbekistan," Agricultural Water Management, Elsevier, vol. 263(C).
    3. Mojtaba Zeraatpisheh & Esmaeil Bakhshandeh & Mostafa Emadi & Tengfei Li & Ming Xu, 2020. "Integration of PCA and Fuzzy Clustering for Delineation of Soil Management Zones and Cost-Efficiency Analysis in a Citrus Plantation," Sustainability, MDPI, vol. 12(14), pages 1-17, July.
    4. Chen, Weiping & Hou, Zhenan & Wu, Laosheng & Liang, Yongchao & Wei, Changzhou, 2010. "Evaluating salinity distribution in soil irrigated with saline water in arid regions of northwest China," Agricultural Water Management, Elsevier, vol. 97(12), pages 2001-2008, November.
    5. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Xiaoyu & Kang, Yaohu & Wan, Shuqin & Li, Xiaobin, 2022. "Effect of salinity on oleic sunflower (Helianthus annuus Linn.) under drip irrigation in arid area of Northwest China," Agricultural Water Management, Elsevier, vol. 259(C).
    2. Yu, Qihua & Kang, Shaozhong & Hu, Shunjun & Zhang, Lu & Zhang, Xiaotao, 2021. "Modeling soil water-salt dynamics and crop response under severely saline condition using WAVES: Searching for a target irrigation volume for saline water irrigation," Agricultural Water Management, Elsevier, vol. 256(C).
    3. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    4. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    5. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).
    6. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Mota, M. & Wang, T., 2021. "Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization," Agricultural Water Management, Elsevier, vol. 252(C).
    7. Huang, Ya & Zhang, Zhe & Li, Zhenhua & Dai, Danqiong & Li, Yanping, 2022. "Evaluation of water use efficiency and optimal irrigation quantity of spring maize in Hetao Irrigation District using the Noah-MP Land Surface Model," Agricultural Water Management, Elsevier, vol. 264(C).
    8. Zhang, Tibin & Zou, Yufeng & Kisekka, Isaya & Biswas, Asim & Cai, Huanjie, 2021. "Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area," Agricultural Water Management, Elsevier, vol. 243(C).
    9. Liu, Lining & Wang, Tianshu & Wang, Lichun & Wu, Xun & Zuo, Qiang & Shi, Jianchu & Sheng, Jiandong & Jiang, Pingan & Chen, Quanjia & Ben-Gal, Alon, 2022. "Plant water deficit index-based irrigation under conditions of salinity," Agricultural Water Management, Elsevier, vol. 269(C).
    10. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    11. Wenjuan Chen & Mingsi Li & Qinglin Li, 2023. "The Influence of Winter Irrigation Amount on the Characteristics of Water and Salt Distribution and WUE in Different Saline-Alkali Farmlands in Northwest China," Sustainability, MDPI, vol. 15(21), pages 1-17, October.
    12. Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
    13. Ebtessam A. Youssef & Marwa M. Abdelbaset & Osama M. Dewedar & José Miguel Molina-Martínez & Ahmed F. El-Shafie, 2023. "Crop Coefficient Estimation and Effect of Abscisic Acid on Red Cabbage Plants ( Brassica oleracea var. Capitata) under Water-Stress Conditions," Agriculture, MDPI, vol. 13(3), pages 1-16, March.
    14. Zhou, Beibei & Liang, Chaofan & Chen, Xiaopeng & Ye, Sitan & Peng, Yao & Yang, Lu & Duan, Manli & Wang, Xingpeng, 2022. "Magnetically-treated brackish water affects soil water-salt distribution and the growth of cotton with film mulch drip irrigation in Xinjiang, China," Agricultural Water Management, Elsevier, vol. 263(C).
    15. Wang, Ruoshui & Kang, Yaohu & Wan, Shuqin & Hu, Wei & Liu, Shiping & Jiang, Shufang & Liu, Shuhui, 2012. "Influence of different amounts of irrigation water on salt leaching and cotton growth under drip irrigation in an arid and saline area," Agricultural Water Management, Elsevier, vol. 110(C), pages 109-117.
    16. Lin, Xiaomin & Wang, Zhen & Li, Jiusheng, 2022. "Spatial variability of salt content caused by nonuniform distribution of irrigation and soil properties in drip irrigation subunits with different lateral layouts under arid environments," Agricultural Water Management, Elsevier, vol. 266(C).
    17. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    18. Jiang, Donglin & Ao, Chang & Bailey, Ryan T. & Zeng, Wenzhi & Huang, Jiesheng, 2022. "Simulation of water and salt transport in the Kaidu River Irrigation District using the modified SWAT-Salt," Agricultural Water Management, Elsevier, vol. 272(C).
    19. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    20. Cao, Yune & Tian, Yongqiang & Gao, Lihong & Chen, Qingyun, 2016. "Attenuating the negative effects of irrigation with saline water on cucumber (Cucumis sativus L.) by application of straw biological-reactor," Agricultural Water Management, Elsevier, vol. 163(C), pages 169-179.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423004249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.