IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v278y2023ics0378377423000033.html
   My bibliography  Save this article

SWAT model calibration approaches in an integrated paddy-dominated catchment-command

Author

Listed:
  • Dash, Sonam Sandeep
  • Sahoo, Bhabagrahi
  • Raghuwanshi, Narendra Singh

Abstract

The applicability of Soil and Water Assessment Tool (SWAT) for rainfall-runoff modelling in the river-reservoir integrated catchment-command areas is limited due to the limited description of paddy-field dynamics. To model the dominant paddy-field hydrology in most of the catchments of Asian countries with tropical monsoon type climatology, the popular SWAT couples a pothole module in place of the conventional Curve Number (CN) approach. Although few pothole approaches are existing in the literature, the efficacy of these modules have not been evaluated for catchment-scale applications. Moreover, the existing pothole modules are more conceptual in nature with many calibration parameters, that could yield erroneous outcomes in catchment-scale applications. To address these issues, the applicability of the pothole module was assesses and evaluated in a 12,014.70 km2 river catchment-reservoir command iof eastern India. The simulation results reveal that for streamflow generation, the revised pothole approach performed the best with the NSE of 0.62, followed by the CN approach (NSE=0.60) and the original pothole approach (NSE=0.59). The water balance analysis resulted small evapotranspiration (ET) values (0.01 mm/day) for the CN approach and existing approach-based model simulation. The daily streamflow prediction uncertainty was the highest in case of existing pothole approach with R-factor estimate of 0.73, followed by 0.58 and 0.56 in case of CN approach and revised pothole approach, respectively. Overall, the CN approach performs better in case of rain fed paddy field, whereas the revised pothole approach simulates the daily-scale streamflow better in the irrigated paddy conditions.

Suggested Citation

  • Dash, Sonam Sandeep & Sahoo, Bhabagrahi & Raghuwanshi, Narendra Singh, 2023. "SWAT model calibration approaches in an integrated paddy-dominated catchment-command," Agricultural Water Management, Elsevier, vol. 278(C).
  • Handle: RePEc:eee:agiwat:v:278:y:2023:i:c:s0378377423000033
    DOI: 10.1016/j.agwat.2023.108138
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423000033
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kang, M.S. & Park, S.W. & Lee, J.J. & Yoo, K.H., 2006. "Applying SWAT for TMDL programs to a small watershed containing rice paddy fields," Agricultural Water Management, Elsevier, vol. 79(1), pages 72-92, January.
    2. Sakaguchi, A. & Eguchi, S. & Kato, T. & Kasuya, M. & Ono, K. & Miyata, A. & Tase, N., 2014. "Development and evaluation of a paddy module for improving hydrological simulation in SWAT," Agricultural Water Management, Elsevier, vol. 137(C), pages 116-122.
    3. Jagadish Padhiary & Kanhu Charan Patra & Sonam Sandeep Dash, 2022. "A Novel Approach to Identify the Characteristics of Drought under Future Climate Change Scenario," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5163-5189, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Renhua & Gao, Junfeng & Huang, Jiacong, 2016. "WALRUS-paddy model for simulating the hydrological processes of lowland polders with paddy fields and pumping stations," Agricultural Water Management, Elsevier, vol. 169(C), pages 148-161.
    2. Wu, Di & Cui, Yuanlai & Wang, Yitong & Chen, Manyu & Luo, Yufeng & Zhang, Lei, 2019. "Reuse of return flows and its scale effect in irrigation systems based on modified SWAT model," Agricultural Water Management, Elsevier, vol. 213(C), pages 280-288.
    3. Kim, Jihye & Kim, Hakkwan & Kim, Sinae & Jang, Taeil & Jun, Sang-Min & Hwang, Soonho & Song, Jung-Hun & Kang, Moon-Seong, 2022. "Development of a simulation method for paddy fields based on surface FTABLE of hydrological simulation program–FORTRAN," Agricultural Water Management, Elsevier, vol. 271(C).
    4. Coffey, R. & Cummins, E. & Bhreathnach, N. & Flaherty, V.O. & Cormican, M., 2010. "Development of a pathogen transport model for Irish catchments using SWAT," Agricultural Water Management, Elsevier, vol. 97(1), pages 101-111, January.
    5. Jeong, Hanseok & Kim, Hakkwan & Jang, Taeil & Park, Seungwoo, 2016. "Assessing the effects of indirect wastewater reuse on paddy irrigation in the Osan River watershed in Korea using the SWAT model," Agricultural Water Management, Elsevier, vol. 163(C), pages 393-402.
    6. Ayşegül Kuzucu & Gülay Onuşluel Gül, 2023. "Analysis of Drought Dynamics over Annual Maximum Drought Severity Series Based on Daily Index Definitions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1421-1436, February.
    7. Ashok Mishra & S. Kar & V. Singh, 2007. "Prioritizing Structural Management by Quantifying the Effect of Land Use and Land Cover on Watershed Runoff and Sediment Yield," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(11), pages 1899-1913, November.
    8. Jiandong Liu & Tao Pan & Deliang Chen & Xiuji Zhou & Qiang Yu & Gerald N. Flerchinger & De Li Liu & Xintong Zou & Hans W. Linderholm & Jun Du & Dingrong Wu & Yanbo Shen, 2017. "An Improved Ångström-Type Model for Estimating Solar Radiation over the Tibetan Plateau," Energies, MDPI, vol. 10(7), pages 1-28, July.
    9. Yang, Shengtian & Dong, Guotao & Zheng, Donghai & Xiao, Honglin & Gao, Yunfei & Lang, Yang, 2011. "Coupling Xinanjiang model and SWAT to simulate agricultural non-point source pollution in Songtao watershed of Hainan, China," Ecological Modelling, Elsevier, vol. 222(20), pages 3701-3717.
    10. Juan Huang & Yong Pang & Xiaoqiang Zhang & Yifan Tong, 2019. "Water Environmental Capacity Calculation and Allocation of the Taihu Lake Basin in Jiangsu Province Based on Control Unit," IJERPH, MDPI, vol. 16(19), pages 1-15, October.
    11. Lu, Jun & Gong, Dongqin & Shen, Yena & Liu, Mei & Chen, Dingjiang, 2013. "An inversed Bayesian modeling approach for estimating nitrogen export coefficients and uncertainty assessment in an agricultural watershed in eastern China," Agricultural Water Management, Elsevier, vol. 116(C), pages 79-88.
    12. Jung, Jae-Woon & Yoon, Kwang-Sik & Choi, Dong-Ho & Lim, Sang-Sun & Choi, Woo-Jung & Choi, Soo-Myung & Lim, Byung-Jin, 2012. "Water management practices and SCS curve numbers of paddy fields equipped with surface drainage pipes," Agricultural Water Management, Elsevier, vol. 110(C), pages 78-83.
    13. Kim, Dong-Hyeon & Jang, Taeil & Hwang, Syewoon & Jeong, Hanseok, 2021. "Paddy rice adaptation strategies to climate change: Transplanting date shift and BMP applications," Agricultural Water Management, Elsevier, vol. 252(C).
    14. Huiyu Jin & Wanqi Chen & Zhenghong Zhao & Jiajia Wang & Weichun Ma, 2022. "New Framework for Dynamic Water Environmental Capacity Estimation Integrating the Hydro-Environmental Model and Load–Duration Curve Method—A Case Study in Data-Scarce Luanhe River Basin," IJERPH, MDPI, vol. 19(14), pages 1-23, July.
    15. Ryota Tsuchiya & Tasuku Kato & Jaehak Jeong & Jeffrey G. Arnold, 2018. "Development of SWAT-Paddy for Simulating Lowland Paddy Fields," Sustainability, MDPI, vol. 10(9), pages 1-19, September.
    16. Liu, Wei & Fu, Qiang & Meng, Jun & Li, Tianxiao & Cheng, Kun, 2019. "Simulation and analysis of return flow at the field scale in the northern rice irrigation area of China," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    17. Seoro Lee & Youn Shik Park & Jonggun Kim & Kyoung Jae Lim, 2023. "Enhanced Hydrological Simulations in Paddy-Dominated Watersheds Using the Hourly SWAT-MODFLOW-PADDY Modeling Approach," Sustainability, MDPI, vol. 15(11), pages 1-21, June.
    18. Cho, Jaepil & Park, Seungwoo & Im, Sangjun, 2008. "Evaluation of Agricultural Nonpoint Source (AGNPS) model for small watersheds in Korea applying irregular cell delineation," Agricultural Water Management, Elsevier, vol. 95(4), pages 400-408, April.
    19. Reshmidevi, T.V. & Jana, R. & Eldho, T.I., 2008. "Geospatial estimation of soil moisture in rain-fed paddy fields using SCS-CN-based model," Agricultural Water Management, Elsevier, vol. 95(4), pages 447-457, April.
    20. Sakaguchi, A. & Eguchi, S. & Kato, T. & Kasuya, M. & Ono, K. & Miyata, A. & Tase, N., 2014. "Development and evaluation of a paddy module for improving hydrological simulation in SWAT," Agricultural Water Management, Elsevier, vol. 137(C), pages 116-122.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:278:y:2023:i:c:s0378377423000033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.