IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v263y2022ics0378377422000385.html
   My bibliography  Save this article

Calibration and validation of the FAO AquaCrop water productivity model for cassava (Manihot esculenta Crantz)

Author

Listed:
  • Wellens, Joost
  • Raes, Dirk
  • Fereres, Elias
  • Diels, Jan
  • Coppye, Cecilia
  • Adiele, Joy Geraldine
  • Ezui, Kodjovi Senam Guillaume
  • Becerra, Luis-Augusto
  • Selvaraj, Michael Gomez
  • Dercon, Gerd
  • Heng, Lee Kheng

Abstract

FAO’s water-driven crop growth simulation model, AquaCrop, was calibrated and validated for cassava (Manihot esculenta Crantz). Existing datasets, used in similar published works, were shared covering several years and regions (Colombia, Nigeria and Togo). Different varieties were tested for the case of Colombia and a single variety (TME-419) for Nigeria and Togo. Overall calibrated biomass simulations resulted in an R2 of 0.96 and a RMSE of 1.99 tonne DM/ha. As for dry tuber yield estimates, it was not possible to find a single harvest index for the ensembled varieties given their varying characteristics and limited data per variety. However, for the TME-419 variety (Nigeria and Togo) calibrated root tuber simulations yielded and R2 of 0.94 and a RMSE of 2.37 tonne DM/ha. A single crop-file was developed for different cassava varieties and agro-ecological regions, which can be applied with confidence to further study cassava related food security, water productivity, improved agronomic practices, etc.

Suggested Citation

  • Wellens, Joost & Raes, Dirk & Fereres, Elias & Diels, Jan & Coppye, Cecilia & Adiele, Joy Geraldine & Ezui, Kodjovi Senam Guillaume & Becerra, Luis-Augusto & Selvaraj, Michael Gomez & Dercon, Gerd & H, 2022. "Calibration and validation of the FAO AquaCrop water productivity model for cassava (Manihot esculenta Crantz)," Agricultural Water Management, Elsevier, vol. 263(C).
  • Handle: RePEc:eee:agiwat:v:263:y:2022:i:c:s0378377422000385
    DOI: 10.1016/j.agwat.2022.107491
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422000385
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107491?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wellens, Joost & Raes, Dirk & Traore, Farid & Denis, Antoine & Djaby, Bakary & Tychon, Bernard, 2013. "Performance assessment of the FAO AquaCrop model for irrigated cabbage on farmer plots in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 127(C), pages 40-47.
    2. Geerts, S. & Raes, D. & Garcia, M., 2010. "Using AquaCrop to derive deficit irrigation schedules," Agricultural Water Management, Elsevier, vol. 98(1), pages 213-216, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Xiang, Youzhen & Liu, Xiaoqiang & Liao, Zhenqi & Abdelghany, Ahmed Elsayed & Zhang, Fucang & Li, Zhijun, 2022. "Evaluation of AquaCrop model for greenhouse cherry tomato with plastic film mulch under various water and nitrogen supplies," Agricultural Water Management, Elsevier, vol. 274(C).
    2. Vimbayi Grace Petrova Chimonyo & Tendai Polite Chibarabada & Dennis Junior Choruma & Richard Kunz & Sue Walker & Festo Massawe & Albert Thembinkosi Modi & Tafadzwanashe Mabhaudhi, 2022. "Modelling Neglected and Underutilised Crops: A Systematic Review of Progress, Challenges, and Opportunities," Sustainability, MDPI, vol. 14(21), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linker, Raphael & Ioslovich, Ilya & Sylaios, Georgios & Plauborg, Finn & Battilani, Adriano, 2016. "Optimal model-based deficit irrigation scheduling using AquaCrop: A simulation study with cotton, potato and tomato," Agricultural Water Management, Elsevier, vol. 163(C), pages 236-243.
    2. Ćosić, Marija & Stričević, Ružica & Djurović, Nevenka & Moravčević, Djordje & Pavlović, Miloš & Todorović, Mladen, 2017. "Predicting biomass and yield of sweet pepper grown with and without plastic film mulching under different water supply and weather conditions," Agricultural Water Management, Elsevier, vol. 188(C), pages 91-100.
    3. Alvar-Beltrán, Jorge & Saturnin, Coulibaly & Grégoire, Baki & Camacho, Jose Luís & Dao, Abdalla & Migraine, Jean Baptiste & Marta, Anna Dalla, 2023. "Using AquaCrop as a decision-support tool for improved irrigation management in the Sahel region," Agricultural Water Management, Elsevier, vol. 287(C).
    4. Himanshu, Sushil Kumar & Ale, Srinivasulu & Bordovsky, James & Darapuneni, Murali, 2019. "Evaluation of crop-growth-stage-based deficit irrigation strategies for cotton production in the Southern High Plains," Agricultural Water Management, Elsevier, vol. 225(C).
    5. Lankford, B. & Makin, Ian & Matthews, N. & McCornick, Peter G. & Noble, A. & Shah, Tushaar, "undated". "A compact to revitalise large-scale irrigation systems using a leadership-partnership-ownership 'Theory of Change'," Papers published in Journals (Open Access) H047459, International Water Management Institute.
    6. Giorgio Baiamonte & Mario Minacapilli & Giuseppina Crescimanno, 2020. "Effects of Biochar on Irrigation Management and Water Use Efficiency for Three Different Crops in a Desert Sandy Soil," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    7. López-Urrea, R. & Domínguez, A. & Pardo, J.J. & Montoya, F. & García-Vila, M. & Martínez-Romero, A., 2020. "Parameterization and comparison of the AquaCrop and MOPECO models for a high-yielding barley cultivar under different irrigation levels," Agricultural Water Management, Elsevier, vol. 230(C).
    8. Ignacio Lorite & Margarita García-Vila & María-Ascensión Carmona & Cristina Santos & María-Auxiliadora Soriano, 2012. "Assessment of the Irrigation Advisory Services’ Recommendations and Farmers’ Irrigation Management: A Case Study in Southern Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2397-2419, June.
    9. Stricevic, Ruzica & Cosic, Marija & Djurovic, Nevenka & Pejic, Borivoj & Maksimovic, Livija, 2011. "Assessment of the FAO AquaCrop model in the simulation of rainfed and supplementally irrigated maize, sugar beet and sunflower," Agricultural Water Management, Elsevier, vol. 98(10), pages 1615-1621, August.
    10. López-Mata, E. & Tarjuelo, J.M. & Orengo-Valverde, J.J. & Pardo, J.J. & Domínguez, A., 2019. "Irrigation scheduling to maximize crop gross margin under limited water availability," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    11. Razzaghi, Fatemeh & Zhou, Zhenjiang & Andersen, Mathias N. & Plauborg, Finn, 2017. "Simulation of potato yield in temperate condition by the AquaCrop model," Agricultural Water Management, Elsevier, vol. 191(C), pages 113-123.
    12. Mkhabela, Manasah S. & Bullock, Paul R., 2012. "Performance of the FAO AquaCrop model for wheat grain yield and soil moisture simulation in Western Canada," Agricultural Water Management, Elsevier, vol. 110(C), pages 16-24.
    13. Toumi, J. & Er-Raki, S. & Ezzahar, J. & Khabba, S. & Jarlan, L. & Chehbouni, A., 2016. "Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management," Agricultural Water Management, Elsevier, vol. 163(C), pages 219-235.
    14. Kelly, T.D. & Foster, T., 2021. "AquaCrop-OSPy: Bridging the gap between research and practice in crop-water modeling," Agricultural Water Management, Elsevier, vol. 254(C).
    15. Alaa Jamal & Raphael Linker, 2020. "Genetic Operator-Based Particle Filter Combined with Markov Chain Monte Carlo for Data Assimilation in a Crop Growth Model," Agriculture, MDPI, vol. 10(12), pages 1-22, December.
    16. I. Tsakmakis & N. Kokkos & V. Pisinaras & V. Papaevangelou & E. Hatzigiannakis & G. Arampatzis & G.D. Gikas & R. Linker & S. Zoras & V. Evagelopoulos & V.A. Tsihrintzis & A. Battilani & G. Sylaios, 2017. "Operational Precise Irrigation for Cotton Cultivation through the Coupling of Meteorological and Crop Growth Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 563-580, January.
    17. Cruz-Blanco, M. & Lorite, I.J. & Santos, C., 2014. "An innovative remote sensing based reference evapotranspiration method to support irrigation water management under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 131(C), pages 135-145.
    18. Kögler, F. & Söffker, D., 2017. "Water (stress) models and deficit irrigation: System-theoretical description and causality mapping," Ecological Modelling, Elsevier, vol. 361(C), pages 135-156.
    19. Carmona, Gema & Varela-Ortega, Consuelo & Bromley, John, 2011. "Participatory Modelling To Support Decision Making In Water Management. A Case Study In The Middle Guadiana Basin, Spain," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114320, European Association of Agricultural Economists.
    20. Nunes, H.G.G.C. & Farias, V.D.S. & Sousa, D.P. & Costa, D.L.P. & Pinto, J.V.N. & Moura, V.B. & Teixeira, E.O. & Lima, M.J.A. & Ortega-Farias, S. & Souza, P.J.O.P., 2021. "Parameterization of the AquaCrop model for cowpea and assessing the impact of sowing dates normally used on yield," Agricultural Water Management, Elsevier, vol. 252(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:263:y:2022:i:c:s0378377422000385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.