IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v262y2022ics037837742100679x.html
   My bibliography  Save this article

Distinct transpiration characteristics of black locust plantations acclimated to semiarid and subhumid sites in the Loess Plateau, China

Author

Listed:
  • Lyu, Jinlin
  • He, Qiu-Yue
  • Chen, Qiu-Wen
  • Cheng, Ran-Ran
  • Li, Guoqing
  • Otsuki, Kyoichi
  • Yamanaka, Norikazu
  • Du, Sheng

Abstract

Black locust (Robinia pseudoacacia) is widely planted throughout semiarid and subhumid regions of the Loess Plateau of China. Determining the changes in transpiration of this species in different climatic areas is important for revealing the acclimation mechanism of black locust and developing suitable forest management practices, particularly in the context of global climate change. Here, sap flow and canopy conductance of black locust plantation trees in semiarid (Yan’an) and subhumid (Yongshou) sites were quantified using Granier-type thermal dissipation probes and concurrent environmental observations from 2012 to 2017. Several physiological parameters were measured throughout the growing season. The results showed that sap flow was correlated with phenological factors across seasons within a year. However, interannual changes in sap flow were affected mainly by the reference evapotranspiration (ET0) at the Yongshou site, and jointly by precipitation (P), soil water content, and P/ET0 at the Yan’an site. Sap flow response to meteorological factors showed less discrepancy between pre- and post-rainfall periods at the Yan’an site. Moreover, canopy conductance fluctuated less with a wider range of vapor pressure deficit (VPD) and the slope of canopy resistance as a function of VPD was lower, indicating relatively lower sensitivity of stomatal conductance to environmental factors in Yan’an site. Physiological parameters, except for predawn leaf water potential, were significantly different between the two sites. The results suggested that black locust tended to reduce transpiration, modify leaf morphology, and improve water use efficiency to enhance its adaptability to the dryer site. The species changes stomatal regulation characteristics and general growth rate to acclimatize to distinct water habitats.

Suggested Citation

  • Lyu, Jinlin & He, Qiu-Yue & Chen, Qiu-Wen & Cheng, Ran-Ran & Li, Guoqing & Otsuki, Kyoichi & Yamanaka, Norikazu & Du, Sheng, 2022. "Distinct transpiration characteristics of black locust plantations acclimated to semiarid and subhumid sites in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 262(C).
  • Handle: RePEc:eee:agiwat:v:262:y:2022:i:c:s037837742100679x
    DOI: 10.1016/j.agwat.2021.107402
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837742100679X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107402?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nemera, Diriba Bane & Bar-Tal, Asher & Levy, Guy J. & Lukyanov, Victor & Tarchitzky, Jorge & Paudel, Indira & Cohen, Shabtai, 2020. "Mitigating negative effects of long-term treated wastewater application via soil and irrigation manipulations: Sap flow and water relations of avocado trees (Persea americana Mill.)," Agricultural Water Management, Elsevier, vol. 237(C).
    2. Kimberly A. Novick & Darren L. Ficklin & Paul C. Stoy & Christopher A. Williams & Gil Bohrer & A. Christopher Oishi & Shirley A. Papuga & Peter D. Blanken & Asko Noormets & Benjamin N. Sulman & Russel, 2016. "The increasing importance of atmospheric demand for ecosystem water and carbon fluxes," Nature Climate Change, Nature, vol. 6(11), pages 1023-1027, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fu, Chong & Song, Xiaoyu & Li, Lanjun & Zhao, Xinkai & Meng, Pengfei & Wang, Long & Wei, Wanyin & Yang, Nan & Li, Huaiyou, 2023. "Combining the Generalized Complementary Relationship and the Modified Priestley-Taylor Equation to estimate and partition the evapotranspiration of typical plantations and grasslands in the Loess Plat," Agricultural Water Management, Elsevier, vol. 287(C).
    2. Na Li & Tangzhe Nie & Yi Tang & Dehao Lu & Tianyi Wang & Zhongxue Zhang & Peng Chen & Tiecheng Li & Linghui Meng & Yang Jiao & Kaiwen Cheng, 2022. "Responses of Soybean Water Supply and Requirement to Future Climate Conditions in Heilongjiang Province," Agriculture, MDPI, vol. 12(7), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ning Chen & Yifei Zhang & Fenghui Yuan & Changchun Song & Mingjie Xu & Qingwei Wang & Guangyou Hao & Tao Bao & Yunjiang Zuo & Jianzhao Liu & Tao Zhang & Yanyu Song & Li Sun & Yuedong Guo & Hao Zhang &, 2023. "Warming-induced vapor pressure deficit suppression of vegetation growth diminished in northern peatlands," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Belén Cárceles Rodríguez & Víctor Hugo Durán Zuazo & Dionisio Franco Tarifa & Simón Cuadros Tavira & Pedro Cermeño Sacristan & Iván Francisco García-Tejero, 2023. "Irrigation Alternatives for Avocado ( Persea americana Mill.) in the Mediterranean Subtropical Region in the Context of Climate Change: A Review," Agriculture, MDPI, vol. 13(5), pages 1-27, May.
    3. Li, Cheng & Li, Zhaozhe & Zhang, Fangmin & Lu, Yanyu & Duan, Chunfeng & Xu, Yang, 2023. "Seasonal dynamics of carbon dioxide and water fluxes in a rice-wheat rotation system in the Yangtze-Huaihe region of China," Agricultural Water Management, Elsevier, vol. 275(C).
    4. Ma, Shuai & Wang, Liang-Jie & Chu, Lei & Jiang, Jiang, 2023. "Determination of ecological restoration patterns based on water security and food security in arid regions," Agricultural Water Management, Elsevier, vol. 278(C).
    5. Shan Jiang & Jian Zhou & Guojie Wang & Qigen Lin & Ziyan Chen & Yanjun Wang & Buda Su, 2022. "Cropland Exposed to Drought Is Overestimated without Considering the CO 2 Effect in the Arid Climatic Region of China," Land, MDPI, vol. 11(6), pages 1-21, June.
    6. Haidong Zhao & Lina Zhang & M. B. Kirkham & Stephen M. Welch & John W. Nielsen-Gammon & Guihua Bai & Jiebo Luo & Daniel A. Andresen & Charles W. Rice & Nenghan Wan & Romulo P. Lollato & Dianfeng Zheng, 2022. "U.S. winter wheat yield loss attributed to compound hot-dry-windy events," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Zheng Fu & Philippe Ciais & I. Colin Prentice & Pierre Gentine & David Makowski & Ana Bastos & Xiangzhong Luo & Julia K. Green & Paul C. Stoy & Hui Yang & Tomohiro Hajima, 2022. "Atmospheric dryness reduces photosynthesis along a large range of soil water deficits," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Zhang, Yu & Liu, Xiaohong & Jiao, Wenzhe & Zhao, Liangju & Zeng, Xiaomin & Xing, Xiaoyu & Zhang, Lingnan & Hong, Yixue & Lu, Qiangqiang, 2022. "A new multi-variable integrated framework for identifying flash drought in the Loess Plateau and Qinling Mountains regions of China," Agricultural Water Management, Elsevier, vol. 265(C).
    9. Wang, Chunyu & Li, Sien & Wu, Mousong & Zhang, Wenxin & Guo, Zhenyu & Huang, Siyu & Yang, Danni, 2023. "Co-regulation of temperature and moisture in the irrigated agricultural ecosystem productivity," Agricultural Water Management, Elsevier, vol. 275(C).
    10. Dang, Hongzhong & Han, Hui & Chen, Shuai & Li, Mingyang, 2021. "A fragile soil moisture environment exacerbates the climate change-related impacts on the water use by Mongolian Scots pine (Pinus sylvestris var. mongolica) in northern China: Long-term observations," Agricultural Water Management, Elsevier, vol. 251(C).
    11. Elbeltagi, Ahmed & Srivastava, Aman & Deng, Jinsong & Li, Zhibin & Raza, Ali & Khadke, Leena & Yu, Zhoulu & El-Rawy, Mustafa, 2023. "Forecasting vapor pressure deficit for agricultural water management using machine learning in semi-arid environments," Agricultural Water Management, Elsevier, vol. 283(C).
    12. Zefeng Chen & Weiguang Wang & Giovanni Forzieri & Alessandro Cescatti, 2024. "Transition from positive to negative indirect CO2 effects on the vegetation carbon uptake," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Yu, Xingjiao & Qian, Long & Wang, Wen’e & Hu, Xiaotao & Dong, Jianhua & Pi, Yingying & Fan, Kai, 2023. "Comprehensive evaluation of terrestrial evapotranspiration from different models under extreme condition over conterminous United States," Agricultural Water Management, Elsevier, vol. 289(C).
    14. Kourgialas, Nektarios N. & Dokou, Zoi, 2021. "Water management and salinity adaptation approaches of Avocado trees: A review for hot-summer Mediterranean climate," Agricultural Water Management, Elsevier, vol. 252(C).
    15. Nemera, Diriba B. & Dovjik, Ilya & Florentin, Assa & Shahak, Yosepha & Charuvi, Dana & Cohen, Shabtai & Sadka, Avi, 2023. "Sparse-shading red net improves water relations in Valencia orange trees," Agricultural Water Management, Elsevier, vol. 289(C).
    16. David L. Miller & Sebastian Wolf & Joshua B. Fisher & Benjamin F. Zaitchik & Jingfeng Xiao & Trevor F. Keenan, 2023. "Increased photosynthesis during spring drought in energy-limited ecosystems," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Tian, Xin & Dong, Jianzhi & Jin, Shuangyan & He, Hai & Yin, Hao & Chen, Xi, 2023. "Climate change impacts on regional agricultural irrigation water use in semi-arid environments," Agricultural Water Management, Elsevier, vol. 281(C).
    18. Song, Lining & Zhu, Jiaojun & Zheng, Xiao & Li, Xinjunyan & Wang, Kai & Zhang, Jinxin & Wang, Guochen & Sun, Haihong, 2023. "Water use dynamics of trees in a Pinus tabuliformis plantation in semiarid sandy regions, Northeast China," Agricultural Water Management, Elsevier, vol. 275(C).
    19. Ouyang, Lei & Lu, Longwei & Wang, Chunlin & Li, Yanqiong & Wang, Jingyi & Zhao, Xiuhua & Gao, Lei & Zhu, Liwei & Ni, Guangyan & Zhao, Ping, 2022. "A 14-year experiment emphasizes the important role of heat factors in regulating tree transpiration, growth, and water use efficiency of Schima superba in South China," Agricultural Water Management, Elsevier, vol. 273(C).
    20. Chen, Yanan & Ding, Zhi & Yu, Pujia & Yang, Hong & Song, Lisheng & Fan, Lei & Han, Xujun & Ma, Mingguo & Tang, Xuguang, 2022. "Quantifying the variability in water use efficiency from the canopy to ecosystem scale across main croplands," Agricultural Water Management, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:262:y:2022:i:c:s037837742100679x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.