IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v260y2022ics0378377421005795.html
   My bibliography  Save this article

Cultivation models and mulching strategies to improve root-bleeding sap, nutrients uptake and wheat production in semi-arid regions

Author

Listed:
  • Zhang, Tiejun
  • Ali, Shahzad
  • Xi, Yueling
  • Ma, Xingchang
  • Sun, Lefang

Abstract

The application of mulching materials has significantly improved the production of wheat in semi-arid regions. However, various mulching applications under different tillage practices, whether it can improve the root growth, spatial distribution of root, nutrients uptake and grain yield of wheat is not clear. Therefore, a two years field study was carried out during 2016–17 and 2017–18 to evaluate root growth, nutrients uptake, and wheat production under six treatments: CT: conventional planting; SM: wheat stalk mulching; FM: plastic mulching; RT: without plastic mulching with furrow and ridge planting; RP: plastic mulching with furrow and ridge planting; RPS: plastic mulching on ridges and stalk mulching on furrows. Under the RPS treatment, root biomass, soil moisture, soil enzymatic activity, and microbial abundance can be significantly improved, thus promoting root growth, nutrient absorption, and wheat production. The RPS treatment significantly improved the rooting system in the upper soil profile of 50 cm, which helped increase the yield of wheat. At various wheat growth stages, the RPS and RT treatment at the depth of 10–50 cm significantly increased root bleeding saps, and RLD, and reached up to the highest value at 125 DAP. However, there were no differences in RLD between the six different treatment methods in deeper soil profiles below 60 cm. In addition, during 2016–17 and 2017–18, the NH4+ and NO3- delivery rates under the RPS were significantly higher than that of FM and RT, while the delivery rates of NH4+ and NO3- under the RP treatment were maximum compared with FM practice. Under the RPS and RT treatments, the Fe, Ca, P, Zn, K, and Mg delivery rates were significantly maximum. In summary, RPS farming practices have been great potential to improve the rhizosphere environment, root biomass, and wheat yield in semi-arid regions.

Suggested Citation

  • Zhang, Tiejun & Ali, Shahzad & Xi, Yueling & Ma, Xingchang & Sun, Lefang, 2022. "Cultivation models and mulching strategies to improve root-bleeding sap, nutrients uptake and wheat production in semi-arid regions," Agricultural Water Management, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:agiwat:v:260:y:2022:i:c:s0378377421005795
    DOI: 10.1016/j.agwat.2021.107302
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421005795
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107302?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chakraborty, Debashis & Nagarajan, Shantha & Aggarwal, Pramila & Gupta, V.K. & Tomar, R.K. & Garg, R.N. & Sahoo, R.N. & Sarkar, A. & Chopra, U.K. & Sarma, K.S. Sundara & Kalra, N., 2008. "Effect of mulching on soil and plant water status, and the growth and yield of wheat (Triticum aestivum L.) in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 95(12), pages 1323-1334, December.
    2. Li, Xiao-Yan & Gong, Jia-Dong & Gao, Qian-Zhao & Li, Feng-Rui, 2001. "Incorporation of ridge and furrow method of rainfall harvesting with mulching for crop production under semiarid conditions," Agricultural Water Management, Elsevier, vol. 50(3), pages 173-183, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Araya, A. & Stroosnijder, L., 2010. "Effects of tied ridges and mulch on barley (Hordeum vulgare) rainwater use efficiency and production in Northern Ethiopia," Agricultural Water Management, Elsevier, vol. 97(6), pages 841-847, June.
    2. Jia, Qianmin & Sun, Lefeng & Mou, Hongyan & Ali, Shahzad & Liu, Donghua & Zhang, Yan & Zhang, Peng & Ren, Xiaolong & Jia, Zhikuan, 2018. "Effects of planting patterns and sowing densities on grain-filling, radiation use efficiency and yield of maize (Zea mays L.) in semi-arid regions," Agricultural Water Management, Elsevier, vol. 201(C), pages 287-298.
    3. Gao, Haihe & Yan, Changrong & Liu, Qin & Li, Zhen & Yang, Xiao & Qi, Ruimin, 2019. "Exploring optimal soil mulching to enhance yield and water use efficiency in maize cropping in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 225(C).
    4. Ali, Shahzad & Xu, Yueyue & Ma, Xiangcheng & Ahmad, Irshad & Manzoor, & Jia, Qianmin & Akmal, Muhammad & Hussain, Zahid & Arif, Muhammad & Cai, Tie & Zhang, Jiahua & Jia, Zhikuan, 2019. "Deficit irrigation strategies to improve winter wheat productivity and regulating root growth under different planting patterns," Agricultural Water Management, Elsevier, vol. 219(C), pages 1-11.
    5. Ali, Shahzad & Xu, Yueyue & Ahmad, Irshad & Jia, Qianmin & Ma, Xiangcheng & Ullah, Hidayat & Alam, Mukhtar & Adnan, Muhammad & Daur, Ihsanullah & Ren, Xiaolong & Cai, Tie & Zhang, Jiahua & Jia, Zhikua, 2018. "Tillage and deficit irrigation strategies to improve winter wheat production through regulating root development under simulated rainfall conditions," Agricultural Water Management, Elsevier, vol. 209(C), pages 44-54.
    6. Liu, Junming & Si, Zhuanyun & Wu, Lifeng & Shen, Xiaojun & Gao, Yang & Duan, Aiwang, 2023. "High-low seedbed cultivation drives the efficient utilization of key production resources and the improvement of wheat productivity in the North China Plain," Agricultural Water Management, Elsevier, vol. 285(C).
    7. Wang, Huan & Fan, Jun & Fu, Wei & Du, Mengge & Zhou, Gu & Zhou, Mingxing & Hao, Mingde & Shao, Ming'an, 2022. "Good harvests of winter wheat from stored soil water and improved temperature during fallow period by plastic film mulching," Agricultural Water Management, Elsevier, vol. 274(C).
    8. Grum, Berhane & Assefa, Dereje & Hessel, Rudi & Woldearegay, Kifle & Ritsema, Coen J. & Aregawi, Berihun & Geissen, Violette, 2017. "Improving on-site water availability by combining in-situ water harvesting techniques in semi-arid Northern Ethiopia," Agricultural Water Management, Elsevier, vol. 193(C), pages 153-162.
    9. Abdul Waheed & Chuang Li & Murad Muhammad & Mushtaq Ahmad & Khalid Ali Khan & Hamed A. Ghramh & Zhongwei Wang & Daoyuan Zhang, 2023. "Sustainable Potato Growth under Straw Mulching Practices," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
    10. Xiaoyi Jiang & Dandong Mao & Min Zhu & Xingchun Wang & Chunyan Li & Xinkai Zhu & Wenshan Guo & Jinfeng Ding, 2022. "Evaluating the Waterlogging Tolerance of Wheat Cultivars during the Early Growth Stage Using the Comprehensive Evaluation Value and Digital Image Analysis," Agriculture, MDPI, vol. 12(3), pages 1-15, March.
    11. Ali, Shahzad & Jan, Amanullah & Zhang, Peng & Khan, Muhammad Numan & Cai, Tei & Wei, Ting & Ren, Xiaolong & Jia, Qianmin & Han, Qingfang & Jia, Zhikuan, 2016. "Effects of ridge-covering mulches on soil water storage and maize production under simulated rainfall in semiarid regions of China," Agricultural Water Management, Elsevier, vol. 178(C), pages 1-11.
    12. Hu, Yajin & Ma, Penghui & Zhang, Binbin & Hill, Robert L. & Wu, Shufang & Dong, Qin’ge & Chen, Guangjie, 2019. "Exploring optimal soil mulching for the wheat-maize cropping system in sub-humid drought-prone regions in China," Agricultural Water Management, Elsevier, vol. 219(C), pages 59-71.
    13. Gong, Daozhi & Mei, Xurong & Hao, Weiping & Wang, Hanbo & Caylor, Kelly K., 2017. "Comparison of ET partitioning and crop coefficients between partial plastic mulched and non-mulched maize fields," Agricultural Water Management, Elsevier, vol. 181(C), pages 23-34.
    14. Choudhury, B.U. & Singh, Anil Kumar & Pradhan, S., 2013. "Estimation of crop coefficients of dry-seeded irrigated rice–wheat rotation on raised beds by field water balance method in the Indo-Gangetic plains, India," Agricultural Water Management, Elsevier, vol. 123(C), pages 20-31.
    15. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    16. Duan, Chenxiao & Chen, Guangjie & Hu, Yajin & Wu, Shufang & Feng, Hao & Dong, Qin’ge, 2021. "Alternating wide ridges and narrow furrows with film mulching improves soil hydrothermal conditions and maize water use efficiency in dry sub-humid regions," Agricultural Water Management, Elsevier, vol. 245(C).
    17. Guoju, Xiao & Weixiang, Liu & Qiang, Xu & Zhaojun, Sun & Jing, Wang, 2005. "Effects of temperature increase and elevated CO2 concentration, with supplemental irrigation, on the yield of rain-fed spring wheat in a semiarid region of China," Agricultural Water Management, Elsevier, vol. 74(3), pages 243-255, June.
    18. Zhao, Ying & Zhai, Xiafei & Wang, Zhaohui & Li, Huijie & Jiang, Rui & Lee Hill, Robert & Si, Bing & Hao, Feng, 2018. "Simulation of soil water and heat flow in ridge cultivation with plastic film mulching system on the Chinese Loess Plateau," Agricultural Water Management, Elsevier, vol. 202(C), pages 99-112.
    19. He, Zhihao & Gong, Kaiyuan & Zhang, Zhiliang & Dong, Wenbiao & Feng, Hao & Yu, Qiang & He, Jianqiang, 2022. "What is the past, present, and future of scientific research on the Yellow River Basin? —A bibliometric analysis," Agricultural Water Management, Elsevier, vol. 262(C).
    20. Zhang, Peng & Wei, Ting & Han, Qingfang & Ren, Xiaolong & Jia, Zhikuan, 2020. "Effects of different film mulching methods on soil water productivity and maize yield in a semiarid area of China," Agricultural Water Management, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:260:y:2022:i:c:s0378377421005795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.