IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v256y2021ics0378377421003218.html
   My bibliography  Save this article

Effects of deficit irrigation and organic fertilizer on yield, saponin and disease incidence in Panax notoginseng under shaded conditions

Author

Listed:
  • Li, Jie
  • Yang, Qiliang
  • Shi, Zhengtao
  • Zang, Zhennan
  • Liu, Xiaogang

Abstract

Panax notoginseng (Burk) F. H. Chen, called Sanqi, is a valuable herbal plant and is widely used in Chinese medicine. However, the yield and saponin content cannot be guaranteed due to irrational irrigation and fertilizer management in low-latitude regions in southwestern China. To obtain suitable irrigation and organic fertilizer modes for improving the yield and saponin content of the plant, a shelter experiment was conducted using a randomized complete block design with a factorial arrangement of treatments with three replications. Three irrigation regimes, DL, DM and DS (irrigation upper/lower limit: 65–50% θf, 50–35% θf, and 35–20% θf, respectively, where θf is the field capacity), three organic fertilizer levels, FL, FM and FH (33, 48 and 63 t ha−1, respectively), and a control group, CK (65–50% θf and 3 t ha−1), were applied in the two-year and eight-month growth cycles. With the paired comparison design, the results indicated that the flower dry yield, root dry yield and Panax notoginseng saponins (PNS) were significantly affected by different water deficit irrigation and organic fertilizer treatments, and they first increased and then decreased with increased water deficit or organic fertilizer. Compared with DLFH, DMFM reduced water use by 42.39% and fertilizer use by 23.81%, and the flower dry yield, root dry yield, PNS, water use efficiency and partial factor productivity of fertilizer increased by 19.67%, 22.52%, 54.33%, 149.72% and 91.83%, respectively. Under the DMFM treatment, the dry root yield and saponin content for 3-year-old P. notoginseng were 3039.19 kg ha−1 and 10.85%, respectively, which were higher than those resulting from other treatments. Additionally, the PNS resulting from DMFM exhibited the highest comprehensive score and comprehensive index based on principal component analysis and the TOPSIS model. This combination could create a higher yield of flowers and roots, provide a scientific management for planting, and improve the economic benefits for planters and the local government.

Suggested Citation

  • Li, Jie & Yang, Qiliang & Shi, Zhengtao & Zang, Zhennan & Liu, Xiaogang, 2021. "Effects of deficit irrigation and organic fertilizer on yield, saponin and disease incidence in Panax notoginseng under shaded conditions," Agricultural Water Management, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:agiwat:v:256:y:2021:i:c:s0378377421003218
    DOI: 10.1016/j.agwat.2021.107056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421003218
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Zhiyuan & Zheng, Wei & Ma, Yanting & Wang, Xianling & Li, Ziyan & Zhai, Bingnian & Wang, Zhaohui, 2020. "Responses of soil water, nitrate and yield of apple orchard to integrated soil management in Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 240(C).
    2. Medrano, Hipólito & Pou, Alicia & Tomás, Magdalena & Martorell, Sebastià & Gulias, Javier & Flexas, Jaume & Escalona, José M., 2012. "Average daily light interception determines leaf water use efficiency among different canopy locations in grapevine," Agricultural Water Management, Elsevier, vol. 114(C), pages 4-10.
    3. Rong He & Chaofeng Shao & Rongguang Shi & Zheyu Zhang & Run Zhao, 2020. "Development Trend and Driving Factors of Agricultural Chemical Fertilizer Efficiency in China," Sustainability, MDPI, vol. 12(11), pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tuo, Yunfei & Wang, Zhaoyi & Zheng, Yang & Shi, Xiaolan & Liu, Xiangning & Ding, Mingjing & Yang, Qiliang, 2023. "Effect of water and fertilizer regulation on the soil microbial biomass carbon and nitrogen, enzyme activity, and saponin content of Panax notoginseng," Agricultural Water Management, Elsevier, vol. 278(C).
    2. Xufeng Li & Juanjuan Ma & Lijian Zheng & Jinping Chen & Xihuan Sun & Xianghong Guo, 2022. "Optimization of the Regulated Deficit Irrigation Strategy for Greenhouse Tomato Based on the Fuzzy Borda Model," Agriculture, MDPI, vol. 12(3), pages 1-16, February.
    3. Zang, Zhennan & Liang, Jiaping & Yang, Qiliang & Zhou, Ningshan & Li, Na & Liu, Xiaogang & Liu, Yanwei & Tan, Shuai & Chen, Shaomin & Tang, Zhenya, 2022. "An adaptive abiotic stresses strategy to improve water use efficiency, quality, and economic benefits of Panax notoginseng: Deficit irrigation combined with sodium chloride," Agricultural Water Management, Elsevier, vol. 274(C).
    4. Wang, Zeyi & Zhang, Hengjia & Wang, Yingying & Wang, Yong & Lei, Lian & Liang, Chao & Wang, Yucai, 2023. "Deficit irrigation decision-making of indigowoad root based on a model coupling fuzzy theory and grey relational analysis," Agricultural Water Management, Elsevier, vol. 275(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yufeng & Miao, Jiafeng, 2023. "What Determines China’s Agricultural Non-Point Source Pollution? An Improved LMDI Decomposition Analysis," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 48(2), May.
    2. Yang Qi & Mingyue Gao & Haoyu Wang & Huijie Ding & Jianxu Liu & Songsak Sriboonchitta, 2023. "Does Marketization Promote High-Quality Agricultural Development in China?," Sustainability, MDPI, vol. 15(12), pages 1-28, June.
    3. Thongsouk Sompouviset & Yanting Ma & Eakkarin Sukkaew & Zhaoxia Zheng & Ai Zhang & Wei Zheng & Ziyan Li & Bingnian Zhai, 2023. "The Effects of Plastic Mulching Combined with Different Fertilizer Applications on Greenhouse Gas Emissions and Intensity, and Apple Yield in Northwestern China," Agriculture, MDPI, vol. 13(6), pages 1-23, June.
    4. Zhang, Binbin & Su, Shunshun & Duan, Chenxiao & Feng, Hao & Chau, Henry Wai & He, Jianqiang & Li, Yi & Hill, Robert Lee & Wu, Shufang & Zou, Yufeng, 2022. "Effects of partial organic fertilizer replacement combined with rainwater collection system on soil water, nitrate-nitrogen and apple yield of rainfed apple orchard in the Loess Plateau of China: A 3-," Agricultural Water Management, Elsevier, vol. 260(C).
    5. Yao, Zhenzhu & Hou, Xuemin & Wang, Yu & Du, Taisheng, 2023. "Regulation of tomato yield and fruit quality by alternate partial root-zone irrigation strongly depends on truss positions," Agricultural Water Management, Elsevier, vol. 282(C).
    6. D. Grossi & L. Rustioni & G. Simone Di Lorenzo & O. Failla & L. Brancadoro, 2016. "Water deficit effects on grapevine woody tissue pigmentations," Horticultural Science, Czech Academy of Agricultural Sciences, vol. 43(4), pages 188-194.
    7. Smith, Daniel & Old, Kevin & Renwick, Alan & Westbrooke, Victoria, 2023. "The Characteristics, Challenges, and Resilience of Small Rural Farm-Support Agribusiness: A systematic literature review," Australasian Agribusiness Review, University of Melbourne, Department of Agriculture and Food Systems, vol. 31(1), April.
    8. Zhang, Binbin & Yan, Sihui & Li, Bin & Wu, Shufang & Feng, Hao & Gao, Xiaodong & Song, Xiaolin & Siddique, Kadambot H.M., 2023. "Combining organic and chemical fertilizer plus water-saving system reduces environmental impacts and improves apple yield in rainfed apple orchards," Agricultural Water Management, Elsevier, vol. 288(C).
    9. Pagay, V., 2016. "Effects of irrigation regime on canopy water use and dry matter production of ‘Tempranillo’ grapevines in the semi-arid climate of Southern Oregon, USA," Agricultural Water Management, Elsevier, vol. 178(C), pages 271-280.
    10. Di Wang, & Wang, Li, 2023. "Characteristics of soil evaporation at two stages of growth in apple orchards with different ages in a semi-humid region," Agricultural Water Management, Elsevier, vol. 280(C).
    11. Yansong Zhang & Xiaolei Fan & Yu Mao & Yujie Wei & Jianming Xu & Lili Wu, 2023. "The Coupling Relationship and Driving Factors of Fertilizer Consumption, Economic Development and Crop Yield in China," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    12. Jiang, Shouzheng & Zhao, Lu & Liang, Chuan & Hu, Xiaotao & Yaosheng, Wang & Gong, Daozhi & Zheng, Shunsheng & Huang, Yaowei & He, QingYan & Cui, Ningbo, 2022. "Leaf- and ecosystem-scale water use efficiency and their controlling factors of a kiwifruit orchard in the humid region of Southwest China," Agricultural Water Management, Elsevier, vol. 260(C).
    13. Xiaoping Xin & Jiali Shentu & Tiequan Zhang & Xiaoe Yang & Virupax C. Baligar & Zhenli He, 2022. "Sources, Indicators, and Assessment of Soil Contamination by Potentially Toxic Metals," Sustainability, MDPI, vol. 14(23), pages 1-16, November.
    14. He, Zijian & Hu, Qingyang & Zhang, Yi & Cao, Hongxia & Nan, Xueping, 2023. "Effects of irrigation and nitrogen management strategies on soil nitrogen and apple yields in loess plateau of China," Agricultural Water Management, Elsevier, vol. 280(C).
    15. Yushi Chen & Xinhong Fu & Yuying Liu, 2022. "Effect of Farmland Scale on Farmers’ Application Behavior with Organic Fertilizer," IJERPH, MDPI, vol. 19(9), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:256:y:2021:i:c:s0378377421003218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.