IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v254y2021ics0378377421002316.html
   My bibliography  Save this article

A diffusive model of maize root growth in MAIZSIM and its applications in Ridge-Furrow Rainfall Harvesting

Author

Listed:
  • Wang, Zhuangji
  • Timlin, Dennis
  • Li, Sanai
  • Fleisher, David
  • Dathe, Annette
  • Luo, Chenyi
  • Dong, Lixin
  • Reddy, Vangimalla R.
  • Tully, Katherine

Abstract

The ability to accurately simulate root density and its spatial distribution can enhance our understanding of plant adaption to the soil environment and agricultural water management. “Ridge-Furrow Rainfall Harvest (RFRH)” is a recently proposed management practice, which utilizes a mulched ridge and furrowed soil to increase infiltration and conserve water within soil profiles. However, this management technique has not been extensively assessed for its effects on yield and water use. Two-dimensional (2D) root models are useful tools to assess crop yield and water use in RFRH systems as they can simulate root growth and water uptake. MAIZSIM is a comprehensive mechanistic model of maize (Zea mays L.) growth and yield, which uses a 2D finite element representation for soil physical/chemical processes and root growth. However, MAIZSIM utilizes a simple recursive model based on carbon (C) allocation to simulate root distribution. Therefore, the objectives of this study are to (I) develop and implement a finite element based diffusive root growth model in MAIZSIM with evaluations on model performance; and (II) study the effects of RFRH management on maize yield, water use and root development using MAIZSIM with the new root model. The root model was written into three modules, which (I) allocates total C from plant photosynthesis for root growth based on soil water availability and transpiration demand; (II) assigns new allocated C for root growth to selected spatial locations in soil; and (III) calculates the spatial root distribution as C diffusion. The root model was validated using observed root data from published studies, under the influences of soil bulk density, penetration resistance, and soil water conditions (normal, irrigation and drought). Numerical simulations for RFRH management, compared to a flat soil, demonstrated that, although soil evaporation was decreased, the differences for yields, shoot and root dry mass were small. In conclusion, (I) the newly develop diffusive root model provided an accurate way to simulate maize root growth; (II) despite the positive effects of RFRH management on soil water conservation, its influence on maize yield is relatively small. The diffusive model can be used to evaluate the root growth in response to climate changes or management practices and support integrated agricultural simulators that included soil, crop and environmental components.

Suggested Citation

  • Wang, Zhuangji & Timlin, Dennis & Li, Sanai & Fleisher, David & Dathe, Annette & Luo, Chenyi & Dong, Lixin & Reddy, Vangimalla R. & Tully, Katherine, 2021. "A diffusive model of maize root growth in MAIZSIM and its applications in Ridge-Furrow Rainfall Harvesting," Agricultural Water Management, Elsevier, vol. 254(C).
  • Handle: RePEc:eee:agiwat:v:254:y:2021:i:c:s0378377421002316
    DOI: 10.1016/j.agwat.2021.106966
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421002316
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.106966?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yunlong Zhang & Tengteng Li & Shuikuan Bei & Junling Zhang & Xiaolin Li, 2018. "Growth and Distribution of Maize Roots in Response to Nitrogen Accumulation in Soil Profiles after Long-Term Fertilization Management on a Calcareous Soil," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    2. Thidar, Myint & Gong, Daozhi & Mei, Xurong & Gao, Lili & Li, Haoru & Hao, Weiping & Gu, Fengxue, 2020. "Mulching improved soil water, root distribution and yield of maize in the Loess Plateau of Northwest China," Agricultural Water Management, Elsevier, vol. 241(C).
    3. Nyakudya, Innocent Wadzanayi & Stroosnijder, Leo, 2014. "Effect of rooting depth, plant density and planting date on maize (Zea mays L.) yield and water use efficiency in semi-arid Zimbabwe: Modelling with AquaCrop," Agricultural Water Management, Elsevier, vol. 146(C), pages 280-296.
    4. Luo, Chenyi & Wang, Zhuangji & Sauer, Thomas J. & Helmers, Matthew J. & Horton, Robert, 2018. "Portable canopy chamber measurements of evapotranspiration in corn, soybean, and reconstructed prairie," Agricultural Water Management, Elsevier, vol. 198(C), pages 1-9.
    5. Zhao, Ying & Zhai, Xiafei & Wang, Zhaohui & Li, Huijie & Jiang, Rui & Lee Hill, Robert & Si, Bing & Hao, Feng, 2018. "Simulation of soil water and heat flow in ridge cultivation with plastic film mulching system on the Chinese Loess Plateau," Agricultural Water Management, Elsevier, vol. 202(C), pages 99-112.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, You-Liang & Feng, Shao-Yuan & Wang, Feng-Xin & Binley, Andrew, 2018. "Simulation of soil water flow and heat transport in drip irrigated potato field with raised beds and full plastic-film mulch in a semiarid area," Agricultural Water Management, Elsevier, vol. 209(C), pages 178-187.
    2. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    3. Festo Richard Silungwe & Frieder Graef & Sonoko Dorothea Bellingrath-Kimura & Emmanuel A Chilagane & Siza Donald Tumbo & Fredrick Cassian Kahimba & Marcos Alberto Lana, 2019. "Modelling Rainfed Pearl Millet Yield Sensitivity to Abiotic Stresses in Semi-Arid Central Tanzania, Eastern Africa," Sustainability, MDPI, vol. 11(16), pages 1-18, August.
    4. Ran, Hui & Kang, Shaozhong & Li, Fusheng & Du, Taisheng & Tong, Ling & Li, Sien & Ding, Risheng & Zhang, Xiaotao, 2018. "Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 203(C), pages 438-450.
    5. Yi, Jun & Li, Huijie & Zhao, Ying & Shao, Ming'an & Zhang, Hailin & Liu, Muxing, 2022. "Assessing soil water balance to optimize irrigation schedules of flood-irrigated maize fields with different cultivation histories in the arid region," Agricultural Water Management, Elsevier, vol. 265(C).
    6. Liu, Ziqiang & Jia, Guodong & Yu, Xinxiao, 2020. "Water uptake and WUE of Apple tree-Corn Agroforestry in the Loess hilly region of China," Agricultural Water Management, Elsevier, vol. 234(C).
    7. Zhang, Junwei & Xiang, Lingxiao & Zhu, Chenxi & Li, Wuqiang & Jing, Dan & Zhang, Lili & Liu, Yong & Li, Tianlai & Li, Jianming, 2023. "Evaluating the irrigation schedules of greenhouse tomato by simulating soil water balance under drip irrigation," Agricultural Water Management, Elsevier, vol. 283(C).
    8. Espoir Mukengere Bagula & Jackson-Gilbert Mwanjalolo Majaliwa & Twaha Ali Basamba & Jean-Gomez Mubalama Mondo & Bernard Vanlauwe & Geofrey Gabiri & John-Baptist Tumuhairwe & Gustave Nachigera Mushagal, 2022. "Water Use Efficiency of Maize ( Zea mays L.) Crop under Selected Soil and Water Conservation Practices along the Slope Gradient in Ruzizi Watershed, Eastern D.R. Congo," Land, MDPI, vol. 11(10), pages 1-20, October.
    9. Zhang, Guangxin & Meng, Wenhui & Pan, Wenhui & Han, Juan & Liao, Yuncheng, 2022. "Effect of soil water content changes caused by ridge-furrow plastic film mulching on the root distribution and water use pattern of spring maize in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 261(C).
    10. Sandhu, Rupinder & Irmak, Suat, 2019. "Performance of AquaCrop model in simulating maize growth, yield, and evapotranspiration under rainfed, limited and full irrigation," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    11. Amazirh, Abdelhakim & Merlin, Olivier & Er-Raki, Salah & Bouras, Elhoussaine & Chehbouni, Abdelghani, 2021. "Implementing a new texture-based soil evaporation reduction coefficient in the FAO dual crop coefficient method," Agricultural Water Management, Elsevier, vol. 250(C).
    12. Feng, Yu & Hao, Weiping & Gao, Lili & Li, Haoru & Gong, Daozhi & Cui, Ningbo, 2019. "Comparison of maize water consumption at different scales between mulched and non-mulched croplands," Agricultural Water Management, Elsevier, vol. 216(C), pages 315-324.
    13. Chaobiao Meng & Jianyu Zhao & Ning Wang & Kaijing Yang & Fengxin Wang, 2022. "Black Plastic Film Mulching Increases Soil Nitrous Oxide Emissions in Arid Potato Fields," IJERPH, MDPI, vol. 19(23), pages 1-12, November.
    14. Feng, Dingrui & Li, Guangyong & Wang, Dan & Wulazibieke, Mierguli & Cai, Mingkun & Kang, Jing & Yuan, Zicheng & Xu, Houcheng, 2022. "Evaluation of AquaCrop model performance under mulched drip irrigation for maize in Northeast China," Agricultural Water Management, Elsevier, vol. 261(C).
    15. Ruofan Li & Juanjuan Ma & Xihuan Sun & Xianghong Guo & Lijian Zheng, 2021. "Simulation of Soil Water and Heat Flow under Plastic Mulching and Different Ridge Patterns," Agriculture, MDPI, vol. 11(11), pages 1-20, November.
    16. Hongzhen Luo & Ana A. Robles-Aguilar & Ivona Sigurnjak & Evi Michels & Erik Meers, 2021. "Assessing Nitrogen Availability in Biobased Fertilizers: Effect of Vegetation on Mineralization Patterns," Agriculture, MDPI, vol. 11(9), pages 1-18, September.
    17. Jiang, Shouzheng & Liang, Chuan & Cui, Ningbo & Zhao, Lu & Du, Taisheng & Hu, Xiaotao & Feng, Yu & Guan, Jing & Feng, Yi, 2019. "Impacts of climatic variables on reference evapotranspiration during growing season in Southwest China," Agricultural Water Management, Elsevier, vol. 216(C), pages 365-378.
    18. Wu, Yang & Wang, Lichun & Bian, Shaofeng & Liu, Zhiming & Wang, Yongjun & Lv, Yanjie & Cao, Yujun & Yao, Fanyun & Li, Chunxia & Wei, Wenwen, 2019. "Evolution of roots to improve water and nitrogen use efficiency in maize elite inbred lines released during different decades in China," Agricultural Water Management, Elsevier, vol. 216(C), pages 44-59.
    19. Zhang, Binbin & Yan, Sihui & Li, Bin & Wu, Shufang & Feng, Hao & Gao, Xiaodong & Song, Xiaolin & Siddique, Kadambot H.M., 2023. "Combining organic and chemical fertilizer plus water-saving system reduces environmental impacts and improves apple yield in rainfed apple orchards," Agricultural Water Management, Elsevier, vol. 288(C).
    20. Mengyu Guo & Bin Hu & Xin Luo & Chenglin Yuan & Yiquan Cai & Luochuan Xu, 2023. "Design and Test of a Sliding Cutting Device for the Plastic Mulch Waste," Sustainability, MDPI, vol. 15(5), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:254:y:2021:i:c:s0378377421002316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.