IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v234y2020ics0378377419320931.html
   My bibliography  Save this article

Integrating partial root-zone drying and saline water irrigation to sustain sunflower production in freshwater-scarce regions

Author

Listed:
  • Khaleghi, Moazam
  • Hassanpour, Farzad
  • Karandish, Fatemeh
  • Shahnazari, Ali

Abstract

Applying saline water resources for irrigating croplands requires serious attentions when sustainable agriculture is considered. A two-year field investigation was carried out in a drip-irrigated sunflower field under six irrigation treatments, including (i) full freshwater irrigation (FI), full irrigation with diluted seawater (DS) (SI), alternate DS-freshwater irrigation (FSI), freshwater-PRD (partial root-zone drying) irrigation with 25 % less water than full (PRD1), DS-PRD irrigation with 25 % less water than full (PRD2), alternate DS-freshwater irrigation under PRD with 25 % less water than full (PRD3), in three replicates. Compared to the FI treatment, crop yield was reduced by 3.1–32 %, with the lowest one under PRD1. Among the DS treatments, PRD3, resulted in the highest grain yield (4306 kg ha−1), grain nitrogen content (2.83 %), oil yield (1907 kg ha−1) and irrigation water productivity (1.10). PRD3 also saved freshwater by 20 %, and kept soil salinity of the rooting-zone below the maximum crop tolerance threshold. Based on the results, PRD3 might be a cost-effective pathway which guarantees the sustainable application of diluted seawater in the irrigated sunflower lands.

Suggested Citation

  • Khaleghi, Moazam & Hassanpour, Farzad & Karandish, Fatemeh & Shahnazari, Ali, 2020. "Integrating partial root-zone drying and saline water irrigation to sustain sunflower production in freshwater-scarce regions," Agricultural Water Management, Elsevier, vol. 234(C).
  • Handle: RePEc:eee:agiwat:v:234:y:2020:i:c:s0378377419320931
    DOI: 10.1016/j.agwat.2020.106094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419320931
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tang, Pan & Li, Hong & Issaka, Zakaria & Chen, Chao, 2018. "Effect of manifold layout and fertilizer solution concentration on fertilization and flushing times and uniformity of drip irrigation systems," Agricultural Water Management, Elsevier, vol. 200(C), pages 71-79.
    2. Sezen, S.M. & Yazar, A. & Kapur, B. & Tekin, S., 2011. "Comparison of drip and sprinkler irrigation strategies on sunflower seed and oil yield and quality under Mediterranean climatic conditions," Agricultural Water Management, Elsevier, vol. 98(7), pages 1153-1161, May.
    3. Farhadi Machekposhti, Mabood & Shahnazari, Ali & Z. Ahmadi, Mirkhalegh & Aghajani, Ghasem & Ritzema, Henk, 2017. "Effect of irrigation with sea water on soil salinity and yield of oleic sunflower," Agricultural Water Management, Elsevier, vol. 188(C), pages 69-78.
    4. Kang, Yaohu & Chen, Ming & Wan, Shuqin, 2010. "Effects of drip irrigation with saline water on waxy maize (Zea mays L. var. ceratina Kulesh) in North China Plain," Agricultural Water Management, Elsevier, vol. 97(9), pages 1303-1309, September.
    5. Karandish, Fatemeh & Šimůnek, Jiří, 2016. "A field-modeling study for assessing temporal variations of soil-water-crop interactions under water-saving irrigation strategies," Agricultural Water Management, Elsevier, vol. 178(C), pages 291-303.
    6. Chen, Ming & Kang, Yaohu & Wan, Shuqin & Liu, Shi-ping, 2009. "Drip irrigation with saline water for oleic sunflower (Helianthus annuus L.)," Agricultural Water Management, Elsevier, vol. 96(12), pages 1766-1772, December.
    7. Karandish, Fatemeh & Šimůnek, Jiří, 2017. "Two-dimensional modeling of nitrogen and water dynamics for various N-managed water-saving irrigation strategies using HYDRUS," Agricultural Water Management, Elsevier, vol. 193(C), pages 174-190.
    8. Pedrero, F. & Maestre-Valero, J.F. & Mounzer, O. & Alarcón, J.J. & Nicolás, E., 2014. "Physiological and agronomic mandarin trees performance under saline reclaimed water combined with regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 146(C), pages 228-237.
    9. Ghrab, Mohamed & Gargouri, Kamel & Bentaher, Hatem & Chartzoulakis, Kostas & Ayadi, Mohamed & Ben Mimoun, Mehdi & Masmoudi, Mohamed Moncef & Ben Mechlia, Netij & Psarras, Georgios, 2013. "Water relations and yield of olive tree (cv. Chemlali) in response to partial root-zone drying (PRD) irrigation technique and salinity under arid climate," Agricultural Water Management, Elsevier, vol. 123(C), pages 1-11.
    10. Sepaskhah, A. R. & Kamgar-Haghighi, A. A., 1997. "Water use and yields of sugarbeet grown under every-other-furrow irrigation with different irrigation intervals," Agricultural Water Management, Elsevier, vol. 34(1), pages 71-79, July.
    11. Amer, Kamal H., 2010. "Corn crop response under managing different irrigation and salinity levels," Agricultural Water Management, Elsevier, vol. 97(10), pages 1553-1563, October.
    12. Zheng, W.W. & Chun, I.J. & Hong, S.B. & Zang, Y.X., 2013. "Vegetative growth, mineral change, and fruit quality of ‘Fuji’ tree as affected by foliar seawater application," Agricultural Water Management, Elsevier, vol. 126(C), pages 97-103.
    13. Rahil, M.H. & Qanadillo, A., 2015. "Effects of different irrigation regimes on yield and water use efficiency of cucumber crop," Agricultural Water Management, Elsevier, vol. 148(C), pages 10-15.
    14. Wan, Shuqin & Kang, Yaohu & Wang, Dan & Liu, Shi-ping, 2010. "Effect of saline water on cucumber (Cucumis sativus L.) yield and water use under drip irrigation in North China," Agricultural Water Management, Elsevier, vol. 98(1), pages 105-113, December.
    15. Karandish, Fatemeh & Šimůnek, Jiří, 2018. "An application of the water footprint assessment to optimize production of crops irrigated with saline water: A scenario assessment with HYDRUS," Agricultural Water Management, Elsevier, vol. 208(C), pages 67-82.
    16. Wang, Huanyuan & Ju, Xiaotang & Wei, Yongping & Li, Baoguo & Zhao, Lulu & Hu, Kelin, 2010. "Simulation of bromide and nitrate leaching under heavy rainfall and high-intensity irrigation rates in North China Plain," Agricultural Water Management, Elsevier, vol. 97(10), pages 1646-1654, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jingang & Chen, Jing & He, Pingru & Chen, Dan & Dai, Xiaoping & Jin, Qiu & Su, Xiaoyue, 2022. "The optimal irrigation water salinity and salt component for high-yield and good-quality of tomato in Ningxia," Agricultural Water Management, Elsevier, vol. 274(C).
    2. Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).
    3. Li, Wenjia & Gao, Yanming & Tian, Yongqiang & Li, Jianshe, 2022. "Double-root-grafting enhances irrigation water efficiency and reduces the adverse effects of saline water on tomato yields under alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 264(C).
    4. Li, Jingang & He, Pingru & Chen, Jing & Hamad, Amar Ali Adam & Dai, Xiaoping & Jin, Qiu & Ding, Siyu, 2023. "Tomato performance and changes in soil chemistry in response to salinity and Na/Ca ratio of irrigation water," Agricultural Water Management, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farhadi Machekposhti, Mabood & Shahnazari, Ali & Z. Ahmadi, Mirkhalegh & Aghajani, Ghasem & Ritzema, Henk, 2017. "Effect of irrigation with sea water on soil salinity and yield of oleic sunflower," Agricultural Water Management, Elsevier, vol. 188(C), pages 69-78.
    2. Karandish, Fatemeh & Šimůnek, Jiří, 2018. "An application of the water footprint assessment to optimize production of crops irrigated with saline water: A scenario assessment with HYDRUS," Agricultural Water Management, Elsevier, vol. 208(C), pages 67-82.
    3. Li, Dan & Wan, Shuqin & Li, Xiaobin & Kang, Yaohu & Han, Xiaoyu, 2022. "Effect of water-salt regulation drip irrigation with saline water on tomato quality in an arid region," Agricultural Water Management, Elsevier, vol. 261(C).
    4. Zhang, Yuehong & Li, Xianyue & Šimůnek, Jirí & Shi, Haibin & Chen, Ning & Hu, Qi & Tian, Tong, 2021. "Evaluating soil salt dynamics in a field drip-irrigated with brackish water and leached with freshwater during different crop growth stages," Agricultural Water Management, Elsevier, vol. 244(C).
    5. Haghnazari, Farzad & Karandish, Fatemeh & Darzi-Naftchali, Abdullah & Šimůnek, Jiří, 2020. "Dynamic assessment of the impacts of global warming on nitrate losses from a subsurface-drained rainfed-canola field," Agricultural Water Management, Elsevier, vol. 242(C).
    6. Zhangzhong, Lili & Yang, Peiling & Zhen, Wengang & Zhang, Xin & Wang, Caiyuan, 2019. "A kinetic model for the chemical clogging of drip irrigation system using saline water," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    7. Cucci, Giovanna & Lacolla, Giovanni & Boari, Francesca & Mastro, Mario Alberto & Cantore, Vito, 2019. "Effect of water salinity and irrigation regime on maize (Zea mays L.) cultivated on clay loam soil and irrigated by furrow in Southern Italy," Agricultural Water Management, Elsevier, vol. 222(C), pages 118-124.
    8. Karandish, Fatemeh & Šimůnek, Jiří, 2019. "A comparison of the HYDRUS (2D/3D) and SALTMED models to investigate the influence of various water-saving irrigation strategies on the maize water footprint," Agricultural Water Management, Elsevier, vol. 213(C), pages 809-820.
    9. Wang, Xiangping & Liu, Guangming & Yang, Jingsong & Huang, Guanhua & Yao, Rongjiang, 2017. "Evaluating the effects of irrigation water salinity on water movement, crop yield and water use efficiency by means of a coupled hydrologic/crop growth model," Agricultural Water Management, Elsevier, vol. 185(C), pages 13-26.
    10. Han, Xiaoyu & Kang, Yaohu & Wan, Shuqin & Li, Xiaobin, 2022. "Effect of salinity on oleic sunflower (Helianthus annuus Linn.) under drip irrigation in arid area of Northwest China," Agricultural Water Management, Elsevier, vol. 259(C).
    11. Karandish, Fatemeh & Šimůnek, Jiří, 2017. "Two-dimensional modeling of nitrogen and water dynamics for various N-managed water-saving irrigation strategies using HYDRUS," Agricultural Water Management, Elsevier, vol. 193(C), pages 174-190.
    12. Wan, Shuqin & Jiao, Yanping & Kang, Yaohu & Hu, Wei & Jiang, Shufang & Tan, Junli & Liu, Wei, 2012. "Drip irrigation of waxy corn (Zea mays L. var. ceratina Kulesh) for production in highly saline conditions," Agricultural Water Management, Elsevier, vol. 104(C), pages 210-220.
    13. Genxiang Feng & Zhanyu Zhang & Zemin Zhang, 2019. "Evaluating the Sustainable Use of Saline Water Irrigation on Soil Water-Salt Content and Grain Yield under Subsurface Drainage Condition," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    14. GhassemiSahebi, Fakhroddin & Mohammadrezapour, Omolbani & Delbari, Masoomeh & KhasheiSiuki, Abbas & Ritzema, Henk & Cherati, Ali, 2020. "Effect of utilization of treated wastewater and seawater with Clinoptilolite-Zeolite on yield and yield components of sorghum," Agricultural Water Management, Elsevier, vol. 234(C).
    15. Liu, Haijun & Yin, Congyan & Gao, Zhuangzhuang & Hou, Lizhu, 2021. "Evaluation of cucumber yield, economic benefit and water productivity under different soil matric potentials in solar greenhouses in North China," Agricultural Water Management, Elsevier, vol. 243(C).
    16. Wang, Ruoshui & Kang, Yaohu & Wan, Shuqin & Hu, Wei & Liu, Shiping & Jiang, Shufang & Liu, Shuhui, 2012. "Influence of different amounts of irrigation water on salt leaching and cotton growth under drip irrigation in an arid and saline area," Agricultural Water Management, Elsevier, vol. 110(C), pages 109-117.
    17. Ramos, Tiago B. & Darouich, Hanaa & Šimůnek, Jiří & Gonçalves, Maria C. & Martins, José C., 2019. "Soil salinization in very high-density olive orchards grown in southern Portugal: Current risks and possible trends," Agricultural Water Management, Elsevier, vol. 217(C), pages 265-281.
    18. Amer, Kamal H., 2011. "Effect of irrigation method and quantity on squash yield and quality," Agricultural Water Management, Elsevier, vol. 98(8), pages 1197-1206, May.
    19. Li, Jingang & Chen, Jing & He, Pingru & Chen, Dan & Dai, Xiaoping & Jin, Qiu & Su, Xiaoyue, 2022. "The optimal irrigation water salinity and salt component for high-yield and good-quality of tomato in Ningxia," Agricultural Water Management, Elsevier, vol. 274(C).
    20. Zhang, Chen & Li, Xiaobin & Kang, Yaohu & Wang, Xunming, 2019. "Salt leaching and response of Dianthus chinensis L. to saline water drip-irrigation in two coastal saline soils," Agricultural Water Management, Elsevier, vol. 218(C), pages 8-16.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:234:y:2020:i:c:s0378377419320931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.