IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v226y2019ics0378377419315161.html
   My bibliography  Save this article

Evapotranspiration and crop coefficient patterns of an apple orchard in a sub-humid environment

Author

Listed:
  • Zanotelli, Damiano
  • Montagnani, Leonardo
  • Andreotti, Carlo
  • Tagliavini, Massimo

Abstract

Increasing water use efficiency is one of the main challenges of sustainable fruit tree production. From 2013 to 2015 we measured actual evapotranspiration (ETa) using eddy covariance in a well-irrigated apple orchard located in in South Tyrol (Italy), a sub-humid environment. We assessed the experimental crop coefficient (Kcexp) and analyzed the dependency of Kc on specific environmental variables at a daily time scale. Kcexp values changed throughout the season following a bell-shaped trend and were generally lower than the FAO tabular values corrected for local climatic conditions. In the mid-season phase, when LAI and tabular Kc are supposed to be constant, the average experimental Kc (Kc¯exp) was 1.01, 86% of the Kc value reported by FAO (1.18). Mid-season Kc residuals (Kcexp - Kc¯exp) were positively correlated with daily vapor pressure deficit (VPD) (ρ = 0.45), suggesting that the daily Kc variability observed is due, at least in part, to changes in the evaporative demands of the atmosphere. We explain these results by considering the relatively humid environment, the high water availability and the fact that leaves on apple trees are more tightly coupled to the atmosphere with respect to a smoother grass surface.

Suggested Citation

  • Zanotelli, Damiano & Montagnani, Leonardo & Andreotti, Carlo & Tagliavini, Massimo, 2019. "Evapotranspiration and crop coefficient patterns of an apple orchard in a sub-humid environment," Agricultural Water Management, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:agiwat:v:226:y:2019:i:c:s0378377419315161
    DOI: 10.1016/j.agwat.2019.105756
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419315161
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.105756?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lecina, S. & Martinez-Cob, A. & Perez, P. J. & Villalobos, F. J. & Baselga, J. J., 2003. "Fixed versus variable bulk canopy resistance for reference evapotranspiration estimation using the Penman-Monteith equation under semiarid conditions," Agricultural Water Management, Elsevier, vol. 60(3), pages 181-198, May.
    2. Villalobos, F.J. & Testi, L. & Moreno-Perez, M.F., 2009. "Evaporation and canopy conductance of citrus orchards," Agricultural Water Management, Elsevier, vol. 96(4), pages 565-573, April.
    3. Allen, Richard G. & Pruitt, William O. & Wright, James L. & Howell, Terry A. & Ventura, Francesca & Snyder, Richard & Itenfisu, Daniel & Steduto, Pasquale & Berengena, Joaquin & Yrisarry, Javier Basel, 2006. "A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 1-22, March.
    4. Volschenk, Theresa, 2017. "Evapotranspiration and crop coefficients of Golden Delicious/M793 apple trees in the Koue Bokkeveld," Agricultural Water Management, Elsevier, vol. 194(C), pages 184-191.
    5. Paco, T.A. & Ferreira, M.I. & Conceicao, N., 2006. "Peach orchard evapotranspiration in a sandy soil: Comparison between eddy covariance measurements and estimates by the FAO 56 approach," Agricultural Water Management, Elsevier, vol. 85(3), pages 305-313, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdel-Sattar, Mahmoud & Kotb, Hatem R.M., 2021. "Nutritional status and productivity of Anna apple trees in the year following autumn irrigation determent," Agricultural Water Management, Elsevier, vol. 252(C).
    2. Ntshidi, Z. & Dzikiti, S. & Mazvimavi, D. & Mobe, N.T., 2021. "Contribution of understorey vegetation to evapotranspiration partitioning in apple orchards under Mediterranean climatic conditions in South Africa," Agricultural Water Management, Elsevier, vol. 245(C).
    3. Aguzzoni, A. & Engel, M. & Zanotelli, D. & Penna, D. & Comiti, F. & Tagliavini, M., 2022. "Water uptake dynamics in apple trees assessed by an isotope labeling approach," Agricultural Water Management, Elsevier, vol. 266(C).
    4. Mobe, N.T. & Dzikiti, S. & Zirebwa, S.F. & Midgley, S.J.E. & von Loeper, W. & Mazvimavi, D. & Ntshidi, Z. & Jovanovic, N.Z., 2020. "Estimating crop coefficients for apple orchards with varying canopy cover using measured data from twelve orchards in the Western Cape Province, South Africa," Agricultural Water Management, Elsevier, vol. 233(C).
    5. Hu, K.X. & Awange, J.L. & Kuhn, M. & Zerihun, A., 2022. "Irrigated agriculture potential of Australia’s northern territory inferred from spatial assessment of groundwater availability and crop evapotranspiration," Agricultural Water Management, Elsevier, vol. 264(C).
    6. Rallo, G. & Paço, T.A. & Paredes, P. & Puig-Sirera, À. & Massai, R. & Provenzano, G. & Pereira, L.S., 2021. "Updated single and dual crop coefficients for tree and vine fruit crops," Agricultural Water Management, Elsevier, vol. 250(C).
    7. Mhawej, Mario & Nasrallah, Ali & Abunnasr, Yaser & Fadel, Ali & Faour, Ghaleb, 2021. "Better irrigation management using the satellite-based adjusted single crop coefficient (aKc) for over sixty crop types in California, USA," Agricultural Water Management, Elsevier, vol. 256(C).
    8. Hui Cao & Hongbo Wang & Yong Li & Abdoul Kader Mounkaila Hamani & Nan Zhang & Xingpeng Wang & Yang Gao, 2021. "Evapotranspiration Partition and Dual Crop Coefficients in Apple Orchard with Dwarf Stocks and Dense Planting in Arid Region, Aksu Oasis, Southern Xinjiang," Agriculture, MDPI, vol. 11(11), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dzikiti, S. & Lotter, D. & Mpandeli, S. & Nhamo, L., 2022. "Assessing the energy and water balance dynamics of rain-fed rooibos tea crops (Aspalathus linearis) under changing Mediterranean climatic conditions," Agricultural Water Management, Elsevier, vol. 274(C).
    2. Widmoser, Peter, 2009. "A discussion on and alternative to the Penman-Monteith equation," Agricultural Water Management, Elsevier, vol. 96(4), pages 711-721, April.
    3. Mobe, N.T. & Dzikiti, S. & Zirebwa, S.F. & Midgley, S.J.E. & von Loeper, W. & Mazvimavi, D. & Ntshidi, Z. & Jovanovic, N.Z., 2020. "Estimating crop coefficients for apple orchards with varying canopy cover using measured data from twelve orchards in the Western Cape Province, South Africa," Agricultural Water Management, Elsevier, vol. 233(C).
    4. Ji, X.B. & Chen, J.M. & Zhao, W.Z. & Kang, E.S. & Jin, B.W. & Xu, S.Q., 2017. "Comparison of hourly and daily Penman-Monteith grass- and alfalfa-reference evapotranspiration equations and crop coefficients for maize under arid climatic conditions," Agricultural Water Management, Elsevier, vol. 192(C), pages 1-11.
    5. Rana, G. & Katerji, N. & Lazzara, P. & Ferrara, R.M., 2012. "Operational determination of daily actual evapotranspiration of irrigated tomato crops under Mediterranean conditions by one-step and two-step models: Multiannual and local evaluations," Agricultural Water Management, Elsevier, vol. 115(C), pages 285-296.
    6. Kaneko, Teruko & Gould, Nick & Campbell, David & Snelgar, Patrick & Clearwater, Michael J., 2022. "The effect of soil type, fruit load and shaded area on ‘Hass’ avocado (Persea americana Mill.) water use and crop coefficients," Agricultural Water Management, Elsevier, vol. 264(C).
    7. Paredes, P. & Pereira, L.S. & Almorox, J. & Darouich, H., 2020. "Reference grass evapotranspiration with reduced data sets: Parameterization of the FAO Penman-Monteith temperature approach and the Hargeaves-Samani equation using local climatic variables," Agricultural Water Management, Elsevier, vol. 240(C).
    8. Xiaodong Ren & Zhongyi Qu & Diogo S. Martins & Paula Paredes & Luis S. Pereira, 2016. "Daily Reference Evapotranspiration for Hyper-Arid to Moist Sub-Humid Climates in Inner Mongolia, China: I. Assessing Temperature Methods and Spatial Variability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3769-3791, September.
    9. Liu, Xiaoying & Xu, Chunying & Zhong, Xiuli & Li, Yuzhong & Yuan, Xiaohuan & Cao, Jingfeng, 2017. "Comparison of 16 models for reference crop evapotranspiration against weighing lysimeter measurement," Agricultural Water Management, Elsevier, vol. 184(C), pages 145-155.
    10. Xu, Junzeng & Liu, Xiaoyin & Yang, Shihong & Qi, Zhiming & Wang, Yijiang, 2017. "Modeling rice evapotranspiration under water-saving irrigation by calibrating canopy resistance model parameters in the Penman-Monteith equation," Agricultural Water Management, Elsevier, vol. 182(C), pages 55-66.
    11. Escarabajal-Henarejos, D. & Fernández-Pacheco, D.G. & Molina-Martínez, J.M. & Martínez-Molina, L. & Ruiz-Canales, A., 2015. "Selection of device to determine temperature gradients for estimating evapotranspiration using energy balance method," Agricultural Water Management, Elsevier, vol. 151(C), pages 136-147.
    12. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.
    13. Gonçalo C. Rodrigues & Ricardo P. Braga, 2021. "Estimation of Reference Evapotranspiration during the Irrigation Season Using Nine Temperature-Based Methods in a Hot-Summer Mediterranean Climate," Agriculture, MDPI, vol. 11(2), pages 1-13, February.
    14. Panagiotis Christias & Ioannis N. Daliakopoulos & Thrassyvoulos Manios & Mariana Mocanu, 2020. "Comparison of Three Computational Approaches for Tree Crop Irrigation Decision Support," Mathematics, MDPI, vol. 8(5), pages 1-26, May.
    15. Choudhury, B.U. & Singh, Anil Kumar & Pradhan, S., 2013. "Estimation of crop coefficients of dry-seeded irrigated rice–wheat rotation on raised beds by field water balance method in the Indo-Gangetic plains, India," Agricultural Water Management, Elsevier, vol. 123(C), pages 20-31.
    16. Althoff, Daniel & Filgueiras, Roberto & Dias, Santos Henrique Brant & Rodrigues, Lineu Neiva, 2019. "Impact of sum-of-hourly and daily timesteps in the computations of reference evapotranspiration across the Brazilian territory," Agricultural Water Management, Elsevier, vol. 226(C).
    17. Pozníková, Gabriela & Fischer, Milan & van Kesteren, Bram & Orság, Matěj & Hlavinka, Petr & Žalud, Zdeněk & Trnka, Miroslav, 2018. "Quantifying turbulent energy fluxes and evapotranspiration in agricultural field conditions: A comparison of micrometeorological methods," Agricultural Water Management, Elsevier, vol. 209(C), pages 249-263.
    18. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Mota, M. & Wang, T., 2021. "Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization," Agricultural Water Management, Elsevier, vol. 252(C).
    19. Pauwels, Valentijn R.N. & Samson, Roeland, 2006. "Comparison of different methods to measure and model actual evapotranspiration rates for a wet sloping grassland," Agricultural Water Management, Elsevier, vol. 82(1-2), pages 1-24, April.
    20. Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:226:y:2019:i:c:s0378377419315161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.