IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v218y2019icp203-210.html
   My bibliography  Save this article

Response of tall fescue to the reclamation of severely saline coastal soil using treated effluent in Bohai Bay

Author

Listed:
  • Li, Na
  • Kang, Yaohu
  • Li, Xiaobin
  • Wan, Shuqin

Abstract

To evaluate the response of tall fescue (Festuca arundinacea) to the reclamation of severely saline coastal soil with different levels of treated wastewater effluent, a field experiment was conducted in 2015–2016. The treated effluent was saline (EC, 4.2–6.9 dS/m), and five treatments of irrigation water were blended with treated effluent (0%, 25%, 50%, 75% and 100%) and fresh groundwater. The saline soil contained a gravel-sand layer imbedded at depth of 60 cm to cut off the capillary porosity. Irrigation were applied by micro-sprinkler, and the irrigation management was divided into salt-leaching stage (including enhanced salt leaching and water-salt regulation) and normal irrigation stage. The result indicated that during these stages, the leaf chlorophyll content increased as the percentage of treated effluent increased because the main stress was from fertility rather than salinity. During the normal irrigation stage, the leaf proline content increased to 1759.0, 1970.7, 2388.8, 2699.7 and 2820.3 μmol/g in the rainless season, after which it decreased to 485.8, 486.0, 515.9, 513.8 and 561.5 μmol/g in the rainy season. Treated effluent had no significant effect on the root amount of tall fescue, but led to greater root distribution in the shallow layer, except for the 100% treatment because of the induced increase in surface soil salinity. During salt-leaching stage, soil salinity did not clearly affect the yield of tall fescue. The yield generally increased as the treated effluent percentage increased because of the fertility value, while during dry season of normal irrigation stage, the accumulated soil salinity decreased the yield. Overall, the reclamation method using treated effluent is feasible for tall fescue. Based on the method, the appropriate percentage of treated effluent of total applied water (including irrigation and rainfall) was below 70%–80%.

Suggested Citation

  • Li, Na & Kang, Yaohu & Li, Xiaobin & Wan, Shuqin, 2019. "Response of tall fescue to the reclamation of severely saline coastal soil using treated effluent in Bohai Bay," Agricultural Water Management, Elsevier, vol. 218(C), pages 203-210.
  • Handle: RePEc:eee:agiwat:v:218:y:2019:i:c:p:203-210
    DOI: 10.1016/j.agwat.2019.03.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418315324
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.03.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Na & Kang, Yaohu & Li, Xiaobin & Wan, Shuqin & Xu, Jiachong, 2019. "Effect of the micro-sprinkler irrigation method with treated effluent on soil physical and chemical properties in sea reclamation land," Agricultural Water Management, Elsevier, vol. 213(C), pages 222-230.
    2. Al-Nakshabandi, G. A. & Saqqar, M. M. & Shatanawi, M. R. & Fayyad, M. & Al-Horani, H., 1997. "Some environmental problems associated with the use of treated wastewater for irrigation in Jordan," Agricultural Water Management, Elsevier, vol. 34(1), pages 81-94, July.
    3. Oster, J. D., 1994. "Irrigation with poor quality water," Agricultural Water Management, Elsevier, vol. 25(3), pages 271-297, July.
    4. Shalhevet, Joseph, 1994. "Using water of marginal quality for crop production: major issues," Agricultural Water Management, Elsevier, vol. 25(3), pages 233-269, July.
    5. Chen, Xiulong & Kang, Yaohu & Wan, Shuqin & Chu, Linlin & Li, Xiaobin, 2015. "Chinese rose (Rosa chinensis) cultivation in Bohai Bay, China, using an improved drip irrigation method to reclaim heavy coastal saline soils," Agricultural Water Management, Elsevier, vol. 158(C), pages 99-111.
    6. Toze, Simon, 2006. "Reuse of effluent water--benefits and risks," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 147-159, February.
    7. Sun, Jiaxia & Kang, Yaohu & Wan, Shuqin, 2013. "Effects of an imbedded gravel–sand layer on reclamation of coastal saline soils under drip irrigation and on plant growth," Agricultural Water Management, Elsevier, vol. 123(C), pages 12-19.
    8. Al-Lahham, O. & El Assi, N. M. & Fayyad, M., 2003. "Impact of treated wastewater irrigation on quality attributes and contamination of tomato fruit," Agricultural Water Management, Elsevier, vol. 61(1), pages 51-62, June.
    9. Hoffman, Glenn J. & Jobes, Jack A. & Alves, William J., 1983. "Response of tall fescue to irrigation water salinity, leaching fraction, and irrigation frequency," Agricultural Water Management, Elsevier, vol. 7(4), pages 439-456, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yuehong & Li, Xianyue & Šimůnek, Jirí & Shi, Haibin & Chen, Ning & Hu, Qi & Tian, Tong, 2021. "Evaluating soil salt dynamics in a field drip-irrigated with brackish water and leached with freshwater during different crop growth stages," Agricultural Water Management, Elsevier, vol. 244(C).
    2. Che, Zheng & Wang, Jun & Li, Jiusheng, 2022. "Modeling strategies to balance salt leaching and nitrogen loss for drip irrigation with saline water in arid regions," Agricultural Water Management, Elsevier, vol. 274(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Na & Kang, Yaohu & Li, Xiaobin & Wan, Shuqin & Xu, Jiachong, 2019. "Effect of the micro-sprinkler irrigation method with treated effluent on soil physical and chemical properties in sea reclamation land," Agricultural Water Management, Elsevier, vol. 213(C), pages 222-230.
    2. Li, Na & Kang, Yaohu & Li, Xiaobin & Wan, Shuqin, 2020. "Management of sea reclamation land using drip irrigation with treated effluent and its effect on Rosa chinensis," Agricultural Water Management, Elsevier, vol. 228(C).
    3. Tedeschi, A. & Lavini, A. & Riccardi, M. & Pulvento, C. & d'Andria, R., 2011. "Melon crops (Cucumis melo L., cv. Tendral) grown in a mediterranean environment under saline-sodic conditions: Part I. Yield and quality," Agricultural Water Management, Elsevier, vol. 98(9), pages 1329-1338, July.
    4. Ahmed, B.A. Ould & Yamamoto, T. & Rasiah, V. & Inoue, M. & Anyoji, H., 2007. "The impact of saline water irrigation management options in a dune sand on available soil water and its salinity," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 63-72, March.
    5. Aiello, Rosa & Cirelli, Giuseppe Luigi & Consoli, Simona, 2007. "Effects of reclaimed wastewater irrigation on soil and tomato fruits: A case study in Sicily (Italy)," Agricultural Water Management, Elsevier, vol. 93(1-2), pages 65-72, October.
    6. Seidu, Razak & Drechsel, Pay, 2011. "Analyse cout-efficacite des interventions pour reduire les maladies diarrheiques chez les consommateurs de laitues irriguees avec des eaux usees au Ghana. In French," Book Chapters,, International Water Management Institute.
    7. Bame, I.B. & Hughes, J.C. & Titshall, L.W. & Buckley, C.A., 2014. "The effect of irrigation with anaerobic baffled reactor effluent on nutrient availability, soil properties and maize growth," Agricultural Water Management, Elsevier, vol. 134(C), pages 50-59.
    8. Kang, Yaohu & Chen, Ming & Wan, Shuqin, 2010. "Effects of drip irrigation with saline water on waxy maize (Zea mays L. var. ceratina Kulesh) in North China Plain," Agricultural Water Management, Elsevier, vol. 97(9), pages 1303-1309, September.
    9. Gatta, Giuseppe & Libutti, Angela & Gagliardi, Anna & Beneduce, Luciano & Brusetti, Lorenzo & Borruso, Luigimaria & Disciglio, Grazia & Tarantino, Emanuele, 2015. "Treated agro-industrial wastewater irrigation of tomato crop: Effects on qualitative/quantitative characteristics of production and microbiological properties of the soil," Agricultural Water Management, Elsevier, vol. 149(C), pages 33-43.
    10. Lonigro, Antonio & Rubino, Pietro & Lacasella, Vita & Montemurro, Nicola, 2016. "Faecal pollution on vegetables and soil drip irrigated with treated municipal wastewaters," Agricultural Water Management, Elsevier, vol. 174(C), pages 66-73.
    11. Murtaza, G. & Ghafoor, A. & Qadir, M., 2006. "Irrigation and soil management strategies for using saline-sodic water in a cotton-wheat rotation," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 98-114, March.
    12. Bassil, Elias S. & Kaffka, Stephen R., 2002. "Response of safflower (Carthamus tinctorius L.) to saline soils and irrigation: II. Crop response to salinity," Agricultural Water Management, Elsevier, vol. 54(1), pages 81-92, March.
    13. Dong, Shide & Wan, Shuqin & Kang, Yaohu & Miao, Junxia & Li, Xiaobin, 2021. "Different mulching materials influence the reclamation of saline soil and growth of the Lycium barbarum L. under drip-irrigation in saline wasteland in northwest China," Agricultural Water Management, Elsevier, vol. 247(C).
    14. Erel, Ran & Eppel, Amir & Yermiyahu, Uri & Ben-Gal, Alon & Levy, Guy & Zipori, Isaac & Schaumann, Gabriele E. & Mayer, Oliver & Dag, Arnon, 2019. "Long-term irrigation with reclaimed wastewater: Implications on nutrient management, soil chemistry and olive (Olea europaea L.) performance," Agricultural Water Management, Elsevier, vol. 213(C), pages 324-335.
    15. Bassil, Elias S. & Kaffka, Stephen R., 2002. "Response of safflower (Carthamus tinctorius L.) to saline soils and irrigation: I. Consumptive water use," Agricultural Water Management, Elsevier, vol. 54(1), pages 67-80, March.
    16. Elgallal, M. & Fletcher, L. & Evans, B., 2016. "Assessment of potential risks associated with chemicals in wastewater used for irrigation in arid and semiarid zones: A review," Agricultural Water Management, Elsevier, vol. 177(C), pages 419-431.
    17. Yarami, Najmeh & Sepaskhah, Ali Reza, 2015. "Saffron response to irrigation water salinity, cow manure and planting method," Agricultural Water Management, Elsevier, vol. 150(C), pages 57-66.
    18. Herpin, Uwe & Gloaguen, Thomas Vincent & da Fonseca, Adriel Ferreira & Montes, Celia Regina & Mendonca, Fernando Campos & Piveli, Roque Passos & Breulmann, Gerhard & Forti, Maria Cristina & Melfi, Ado, 2007. "Chemical effects on the soil-plant system in a secondary treated wastewater irrigated coffee plantation--A pilot field study in Brazil," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 105-115, April.
    19. Dong, Shide & Wang, Guangmei & Kang, Yaohu & Ma, Qian & Wan, Shuqin, 2022. "Soil water and salinity dynamics under the improved drip-irrigation scheduling for ecological restoration in the saline area of Yellow River basin," Agricultural Water Management, Elsevier, vol. 264(C).
    20. Ould Ahmed, B.A. & Inoue, M. & Moritani, S., 2010. "Effect of saline water irrigation and manure application on the available water content, soil salinity, and growth of wheat," Agricultural Water Management, Elsevier, vol. 97(1), pages 165-170, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:218:y:2019:i:c:p:203-210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.