IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v213y2019icp1078-1083.html
   My bibliography  Save this article

Adjusting irrigation uniformity coefficients for unimportant variability on a small scale

Author

Listed:
  • Mohamed, Abdelmoneim Z.
  • Peters, R. Troy
  • Zhu, Xingye
  • Sarwar, Abid

Abstract

Distribution Uniformity (DU) and the Coefficient of Uniformity (CU) are commonly used irrigation performance measures of how evenly water is applied across a field during irrigation. The more DU or CU can be improved, the more water will be conserved and the better the crop will perform. DU and CU are most commonly measured for sprinkler irrigation using catch cans. Gross irrigation amounts are often increased to account for poor DU and CU by dividing the net irrigation required by the DU or CU as a decimal. However, non-uniformity on a very small scale (i.e. less than 30 cm) is less important since the soil can redistribute the water and the crop roots can get water from wetter regions. In this paper, a new method is suggested to measure and adjust DU and CU for the less important irrigation application variability on a small scale. These methods were applied to uniformity evaluations in grower fields at different locations in Washington and Oregon, USA. The results showed that the absolute value of DU and CU might be adjusted up 6–8% and 3–6%, respectively. If gross irrigation depth is being corrected for poor DU or CU, then using this method would result in 9–12.5% less water being applied to compensate for poor DU. This method helps give a DU and a CU that are more representative of what the crops in a field as a whole “feel” and helps prevent over application of irrigation water to correct for variability in water application depths on a small scale.

Suggested Citation

  • Mohamed, Abdelmoneim Z. & Peters, R. Troy & Zhu, Xingye & Sarwar, Abid, 2019. "Adjusting irrigation uniformity coefficients for unimportant variability on a small scale," Agricultural Water Management, Elsevier, vol. 213(C), pages 1078-1083.
  • Handle: RePEc:eee:agiwat:v:213:y:2019:i:c:p:1078-1083
    DOI: 10.1016/j.agwat.2018.07.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418302713
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.07.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Jiusheng & Kawano, Hiroshi, 1996. "The areal distribution of soil moisture under sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 32(1), pages 29-36, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sarwar, Abid & Peters, R. Troy & Mehanna, Hani & Amini, Mohamma Zaman & Mohamed, Abdelmoneim Zakaria, 2019. "Evaluating water application efficiency of low and mid elevation spray application under changing weather conditions," Agricultural Water Management, Elsevier, vol. 221(C), pages 84-91.
    2. Sarwar, Abid & Peters, R. Troy & Shafeeque, Muhammad & Mohamed, Abdelmoneim & Arshad, Arfan & Ullah, Ikram & Saddique, Naeem & Muzammil, Muhammad & Aslam, Rana Ammar, 2021. "Accurate measurement of wind drift and evaporation losses could improve water application efficiency of sprinkler irrigation systems − A comparison of measuring techniques," Agricultural Water Management, Elsevier, vol. 258(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Weixia & Li, Jiusheng & Li, Yanfeng & Yin, Jianfeng, 2012. "Effects of drip system uniformity on yield and quality of Chinese cabbage heads," Agricultural Water Management, Elsevier, vol. 110(C), pages 118-128.
    2. Hui, Xin & Zheng, Yudong & Yan, Haijun, 2021. "Water distributions of low-pressure sprinklers as affected by the maize canopy under a centre pivot irrigation system," Agricultural Water Management, Elsevier, vol. 245(C).
    3. Abdelraouf R. E. & H. G. Ghanem & Najat A. Bukhari & Mohamed El-Zaidy, 2020. "Field and Modeling Study on Manual and Automatic Irrigation Scheduling under Deficit Irrigation of Greenhouse Cucumber," Sustainability, MDPI, vol. 12(23), pages 1-20, November.
    4. Sanchez, I. & Zapata, N. & Faci, J.M., 2010. "Combined effect of technical, meteorological and agronomical factors on solid-set sprinkler irrigation: I. Irrigation performance and soil water recharge in alfalfa and maize," Agricultural Water Management, Elsevier, vol. 97(10), pages 1571-1581, October.
    5. Wang, Zhen & Li, Jiusheng & Li, Yanfeng, 2014. "Simulation of nitrate leaching under varying drip system uniformities and precipitation patterns during the growing season of maize in the North China Plain," Agricultural Water Management, Elsevier, vol. 142(C), pages 19-28.
    6. López-Mata, E. & Tarjuelo, J.M. & de Juan, J.A. & Ballesteros, R. & Domínguez, A., 2010. "Effect of irrigation uniformity on the profitability of crops," Agricultural Water Management, Elsevier, vol. 98(1), pages 190-198, December.
    7. Li, Jiusheng & Li, Bei & Rao, Minjie, 2005. "Spatial and temporal distributions of nitrogen and crop yield as affected by nonuniformity of sprinkler fertigation," Agricultural Water Management, Elsevier, vol. 76(3), pages 160-180, August.
    8. Li, Jiusheng, 1998. "Modeling crop yield as affected by uniformity of sprinkler irrigation system," Agricultural Water Management, Elsevier, vol. 38(2), pages 135-146, December.
    9. Zapata, N. & Robles, O. & Playán, E. & Paniagua, P. & Romano, C. & Salvador, R. & Montoya, F., 2018. "Low-pressure sprinkler irrigation in maize: Differences in water distribution above and below the crop canopy," Agricultural Water Management, Elsevier, vol. 203(C), pages 353-365.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:213:y:2019:i:c:p:1078-1083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.