IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v209y2018icp228-239.html
   My bibliography  Save this article

Quantifying soybean evapotranspiration using an eddy covariance approach

Author

Listed:
  • Anapalli, Saseendran S.
  • Fisher, Daniel K.
  • Reddy, Krishna N.
  • Wagle, Pradeep
  • Gowda, Prasanna H.
  • Sui, Ruixiu

Abstract

Quantification of evapotranspiration (ETc) from crops is critical in irrigation scheduling in agriculture. In a pioneering study, in the Mississippi (MS) Delta region, we quantified ETc from soybean (Glycine max L.) using the eddy covariance (EC) approach (ETe). We also monitored ETc using a residual energy balance (EB) approach (ETb) and compared the fluxes. The unclosed energy fluxes in the EC were post-analysis closed using the Bowen ratio (BR) and latent heat (LH) methods. The measurements were conducted in a 35-ha clay soil planted to irrigated soybean in the lower MS Delta in 2016. The crop reached physiological maturity in 126 days after emergence (DAE). Maximum LAI was 5.7 and average grain yield was 4900 kg ha−1. The EC showed an energy balance closure of about 88% on a 30 min and 90% on a daily flux accumulation. The ETe was 18.2, 6.8, and 15.9% lower than ETb, and ETe corrected using BR (ETebr) and LH (ETele) approaches, respectively. Average soybean seasonal ETe, ETb, ETebr, and ETele were 422, 499, 451, and 490 mm, respectively. Seasonal reference-crop evapotranspiration for alfalfa (ETo) and grass (ETr) were 470 and 547 mm, respectively. Daily ETe, ETb, ETebr, ETele, ETo, and ETr averaged across the whole season were 4.4, 5.2, 4.7, 5.1, 4.9, and 5.7 mm, respectively. For scheduling irrigations, based on grass and alfalfa reference crop ET calculated from weather data, averages of the ETe, ETb, ETebr, and ETele daily estimates were used in deriving crop coefficients (Kc). The Kc for grass reference varied between 0.56 and 1.29 and for alfalfa reference varied between 0.56 and 1.02. The information developed will be useful for scheduling irrigations in the MS Delta region, and the methodology developed can be adapted for generating similar information elsewhere.

Suggested Citation

  • Anapalli, Saseendran S. & Fisher, Daniel K. & Reddy, Krishna N. & Wagle, Pradeep & Gowda, Prasanna H. & Sui, Ruixiu, 2018. "Quantifying soybean evapotranspiration using an eddy covariance approach," Agricultural Water Management, Elsevier, vol. 209(C), pages 228-239.
  • Handle: RePEc:eee:agiwat:v:209:y:2018:i:c:p:228-239
    DOI: 10.1016/j.agwat.2018.07.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741830578X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.07.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Uddin, J. & Hancock, N.H. & Smith, R.J. & Foley, J.P., 2013. "Measurement of evapotranspiration during sprinkler irrigation using a precision energy budget (Bowen ratio, eddy covariance) methodology," Agricultural Water Management, Elsevier, vol. 116(C), pages 89-100.
    2. Anapalli, Saseendran S. & Green, Timothy R. & Reddy, Krishna N. & Gowda, Prasanna H. & Sui, Ruixiu & Fisher, Daniel K. & Moorhead, Jerry E. & Marek, Gary W., 2018. "Application of an energy balance method for estimating evapotranspiration in cropping systems," Agricultural Water Management, Elsevier, vol. 204(C), pages 107-117.
    3. Payero, José O. & Irmak, Suat, 2013. "Daily energy fluxes, evapotranspiration and crop coefficient of soybean," Agricultural Water Management, Elsevier, vol. 129(C), pages 31-43.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xingwang & Huo, Zailin & Shukla, Manoj K. & Wang, Xianghao & Guo, Ping & Xu, Xu & Huang, Guanhua, 2020. "Energy fluxes and evapotranspiration over irrigated maize field in an arid area with shallow groundwater," Agricultural Water Management, Elsevier, vol. 228(C).
    2. Anapalli, Saseendran S. & Fisher, Daniel K. & Reddy, Krishna N. & Rajan, Nithya & Pinnamaneni, Srinivasa Rao, 2019. "Modeling evapotranspiration for irrigation water management in a humid climate," Agricultural Water Management, Elsevier, vol. 225(C).
    3. Abou Ali, Asma & Bouchaou, Lhoussaine & Er-Raki, Salah & Hssaissoune, Mohammed & Brouziyne, Youssef & Ezzahar, Jamal & Khabba, Saïd & Chakir, Adnane & Labbaci, Adnane & Chehbouni, Abdelghani, 2023. "Assessment of crop evapotranspiration and deep percolation in a commercial irrigated citrus orchard under semi-arid climate: Combined Eddy-Covariance measurement and soil water balance-based approach," Agricultural Water Management, Elsevier, vol. 275(C).
    4. Granata, Francesco & Di Nunno, Fabio, 2021. "Forecasting evapotranspiration in different climates using ensembles of recurrent neural networks," Agricultural Water Management, Elsevier, vol. 255(C).
    5. Anapalli, Saseendran S. & Pinnamaneni, Srinivasa R. & Chastain, Daryl R. & Reddy, Krishna N. & Simmons, Clyde Douglas, 2023. "Eddy covariance quantification of carbon and water dynamics in twin-row vs. single-row planted corn," Agricultural Water Management, Elsevier, vol. 281(C).
    6. Machakaire, A.T.B. & Steyn, J.M. & Franke, A.C., 2021. "Assessing evapotranspiration and crop coefficients of potato in a semi-arid climate using Eddy Covariance techniques," Agricultural Water Management, Elsevier, vol. 255(C).
    7. Anapalli, Saseendran S. & Pinnamaneni, Srinivasa R. & Reddy, Krishna N. & Sui, Ruixiu & Singh, Gurbir, 2022. "Investigating soybean (Glycine max L.) responses to irrigation on a large-scale farm in the humid climate of the Mississippi Delta region," Agricultural Water Management, Elsevier, vol. 262(C).
    8. Granata, Francesco, 2019. "Evapotranspiration evaluation models based on machine learning algorithms—A comparative study," Agricultural Water Management, Elsevier, vol. 217(C), pages 303-315.
    9. Anapalli, Saseendran S. & Fisher, Daniel K. & Pinnamaneni, Srinivasa Rao & Reddy, Krishna N., 2020. "Quantifying evapotranspiration and crop coefficients for cotton (Gossypium hirsutum L.) using an eddy covariance approach," Agricultural Water Management, Elsevier, vol. 233(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rashid Niaghi, Ali & Jia, Xinhua & Steele, Dean D. & Scherer, Thomas F., 2019. "Drainage water management effects on energy flux partitioning, evapotranspiration, and crop coefficients of corn," Agricultural Water Management, Elsevier, vol. 225(C).
    2. Anapalli, Saseendran S. & Fisher, Daniel K. & Pinnamaneni, Srinivasa Rao & Reddy, Krishna N., 2020. "Quantifying evapotranspiration and crop coefficients for cotton (Gossypium hirsutum L.) using an eddy covariance approach," Agricultural Water Management, Elsevier, vol. 233(C).
    3. Gustavo Castilho Beruski & Luis Miguel Schiebelbein & André Belmont Pereira, 2020. "Maize Yield Components as Affected by Plant Population, Planting Date and Soil Coverings in Brazil," Agriculture, MDPI, vol. 10(12), pages 1-20, November.
    4. Escarabajal-Henarejos, D. & Fernández-Pacheco, D.G. & Molina-Martínez, J.M. & Martínez-Molina, L. & Ruiz-Canales, A., 2015. "Selection of device to determine temperature gradients for estimating evapotranspiration using energy balance method," Agricultural Water Management, Elsevier, vol. 151(C), pages 136-147.
    5. Xiaopei Tang & Haijun Liu & Li Yang & Lun Li & Jie Chang, 2022. "Energy Balance, Microclimate, and Crop Evapotranspiration of Winter Wheat ( Triticum aestivum L.) under Sprinkler Irrigation," Agriculture, MDPI, vol. 12(7), pages 1-23, June.
    6. Wang, Tianxin & Melton, Forrest S. & Pôças, Isabel & Johnson, Lee F. & Thao, Touyee & Post, Kirk & Cassel-Sharma, Florence, 2021. "Evaluation of crop coefficient and evapotranspiration data for sugar beets from landsat surface reflectances using micrometeorological measurements and weighing lysimetry," Agricultural Water Management, Elsevier, vol. 244(C).
    7. Wei, Zheng & Paredes, Paula & Liu, Yu & Chi, Wei Wei & Pereira, Luis S., 2015. "Modelling transpiration, soil evaporation and yield prediction of soybean in North China Plain," Agricultural Water Management, Elsevier, vol. 147(C), pages 43-53.
    8. Pozníková, Gabriela & Fischer, Milan & van Kesteren, Bram & Orság, Matěj & Hlavinka, Petr & Žalud, Zdeněk & Trnka, Miroslav, 2018. "Quantifying turbulent energy fluxes and evapotranspiration in agricultural field conditions: A comparison of micrometeorological methods," Agricultural Water Management, Elsevier, vol. 209(C), pages 249-263.
    9. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    10. da Silva, Evandro H.F.M. & Gonçalves, Alexandre O. & Pereira, Rodolfo A. & Fattori Júnior, Izael M. & Sobenko, Luiz R. & Marin, Fábio R., 2019. "Soybean irrigation requirements and canopy-atmosphere coupling in Southern Brazil," Agricultural Water Management, Elsevier, vol. 218(C), pages 1-7.
    11. Anapalli, Saseendran S. & Green, Timothy R. & Reddy, Krishna N. & Gowda, Prasanna H. & Sui, Ruixiu & Fisher, Daniel K. & Moorhead, Jerry E. & Marek, Gary W., 2018. "Application of an energy balance method for estimating evapotranspiration in cropping systems," Agricultural Water Management, Elsevier, vol. 204(C), pages 107-117.
    12. Sadeghi, S.-H. & Peters, T. & Shafii, B. & Amini, M.Z. & Stöckle, C., 2017. "Continuous variation of wind drift and evaporation losses under a linear move irrigation system," Agricultural Water Management, Elsevier, vol. 182(C), pages 39-54.
    13. Amanda M. Nelson & Nicolas E. Quintana Ashwell & Christopher D. Delhom & Drew M. Gholson, 2022. "Leveraging Big Data to Preserve the Mississippi River Valley Alluvial Aquifer: A Blueprint for the National Center for Alluvial Aquifer Research," Land, MDPI, vol. 11(11), pages 1-17, October.
    14. Campos, Isidro & Neale, Christopher M.U. & Suyker, Andrew E. & Arkebauer, Timothy J. & Gonçalves, Ivo Z., 2017. "Reflectance-based crop coefficients REDUX: For operational evapotranspiration estimates in the age of high producing hybrid varieties," Agricultural Water Management, Elsevier, vol. 187(C), pages 140-153.
    15. Wang, Di & Wang, Li, 2017. "Dynamics of evapotranspiration partitioning for apple trees of different ages in a semiarid region of northwest China," Agricultural Water Management, Elsevier, vol. 191(C), pages 1-15.
    16. Uddin, J. & Smith, R.J. & Hancock, N.H. & Foley, J.P., 2013. "Evaporation and sapflow dynamics during sprinkler irrigation of cotton," Agricultural Water Management, Elsevier, vol. 125(C), pages 35-45.
    17. Zitouna-Chebbi, Rim & Jacob, Frédéric & Prévot, Laurent & Voltz, Marc, 2023. "Documenting evapotranspiration and surface energy fluxes over rainfed annual crops within a Mediterranean hilly agrosystem," Agricultural Water Management, Elsevier, vol. 277(C).
    18. Yang, Yang & Cui, Yuanlai & Bai, Kaihua & Luo, Tongyuan & Dai, Junfeng & Wang, Weiguang & Luo, Yufeng, 2019. "Short-term forecasting of daily reference evapotranspiration using the reduced-set Penman-Monteith model and public weather forecasts," Agricultural Water Management, Elsevier, vol. 211(C), pages 70-80.
    19. Pereira, L.S. & Paredes, P. & López-Urrea, R. & Hunsaker, D.J. & Mota, M. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for vegetable crops, an update of FAO56 crop water requirements approach," Agricultural Water Management, Elsevier, vol. 243(C).
    20. Kibria, Saad & Masia, Sara & Sušnik, Janez & Hessels, Tim Martijn, 2021. "Critical comparison of actual evapotranspiration estimates using ground based, remotely sensed, and simulated data in the USA," Agricultural Water Management, Elsevier, vol. 248(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:209:y:2018:i:c:p:228-239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.