IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v190y2017icp31-41.html
   My bibliography  Save this article

Spinach biomass yield and physiological response to interactive salinity and water stress

Author

Listed:
  • Ors, Selda
  • Suarez, Donald L.

Abstract

Critical shortages of fresh water throughout arid regions are forcing growers to decide among the following options, applying insufficient fresh water, causing water stress, applying saline water causing salt stress or applying some combination minimizing saline water application, causing combined water and salt stress. A comprehensive approach to manage drought and salinity is to evaluate the impact of water stress and salt stress individually and then examine their interactions on plant production. To analyze salinity and water stress responses and their interaction together on spinach growth, an experiment was conducted from April 1 to May 21, 2013, using 6 different irrigation waters at electrical conductivity (EC): 0.85, 4, 7, 9, 12, 15dSm−1. Soil moisture was recorded by sensors and stress treatments had the following soil water matric pressure control (−45kPa), −200 to −300kPa, and −400 to −500kPa. We evaluated three replicates per treatment for yield, vegetative parameters, ion composition, and physiological parameters. The results showed that the spinach yield response to salt and water stress was very different. Spinach yield initially increased with salinity and subsequently decreased only when the irrigation water was EC 9dSm−1and above (osmotic pressure of −310kPa). In contrast, yield decreased at the first water stress level (−230kPa) relative to control. The additional presence of salinity stress decreased the relative yield response due to water stress. Similarly under water stress the relative yield response to increasing salinity was reduced. Although no model provided good prediction of stress response, the best predictive model (relative error) was one that considered the response to multiple stresses as the product of the response to the individual stresses.

Suggested Citation

  • Ors, Selda & Suarez, Donald L., 2017. "Spinach biomass yield and physiological response to interactive salinity and water stress," Agricultural Water Management, Elsevier, vol. 190(C), pages 31-41.
  • Handle: RePEc:eee:agiwat:v:190:y:2017:i:c:p:31-41
    DOI: 10.1016/j.agwat.2017.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377417301725
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2017.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Katerji, N. & van Hoorn, J. W. & Hamdy, A. & Mastrorilli, M., 2004. "Comparison of corn yield response to plant water stress caused by salinity and by drought," Agricultural Water Management, Elsevier, vol. 65(2), pages 95-101, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xianbo & Yang, Hui & Shukla, Manoj K. & Du, Taisheng, 2023. "Proposing a crop-water-salt production function based on plant response to stem water potential," Agricultural Water Management, Elsevier, vol. 278(C).
    2. Daniele Masseroni & Bianca Ortuani & Martina Corti & Pietro Marino Gallina & Giacomo Cocetta & Antonio Ferrante & Arianna Facchi, 2017. "Assessing the Reliability of Thermal and Optical Imaging Techniques for Detecting Crop Water Status under Different Nitrogen Levels," Sustainability, MDPI, vol. 9(9), pages 1-20, August.
    3. Tianyu Wang & Zhenghe Xu & Guibin Pang, 2019. "Effects of Irrigating with Brackish Water on Soil Moisture, Soil Salinity, and the Agronomic Response of Winter Wheat in the Yellow River Delta," Sustainability, MDPI, vol. 11(20), pages 1-16, October.
    4. Syed Abu Bakr Haider Bukhari & Irfana Lalarukh & Syeda Fasiha Amjad & Nida Mansoora & Maliha Naz & Muhammad Naeem & Syeda Aqsa Bukhari & Muhammad Shahbaz & Saleha Ahmad Ali & Theodore Danso Marfo & Su, 2021. "Drought Stress Alleviation by Potassium-Nitrate-Containing Chitosan/Montmorillonite Microparticles Confers Changes in Spinacia oleracea L," Sustainability, MDPI, vol. 13(17), pages 1-15, September.
    5. Qiu, Yuan & Fan, Yaqiong & Chen, Yang & Hao, Xinmei & Li, Sien & Kang, Shaozhong, 2021. "Response of dry matter and water use efficiency of alfalfa to water and salinity stress in arid and semiarid regions of Northwest China," Agricultural Water Management, Elsevier, vol. 254(C).
    6. Yang, Hui & Du, Taisheng & Mao, Xiaomin & Ding, Risheng & Shukla, Manoj K., 2019. "A comprehensive method of evaluating the impact of drought and salt stress on tomato growth and fruit quality based on EPIC growth model," Agricultural Water Management, Elsevier, vol. 213(C), pages 116-127.
    7. Wu, Zhuqing & Fan, Yaqiong & Qiu, Yuan & Hao, Xinmei & Li, Sien & Kang, Shaozhong, 2022. "Response of yield and quality of greenhouse tomatoes to water and salt stresses and biochar addition in Northwest China," Agricultural Water Management, Elsevier, vol. 270(C).
    8. Syeda Fasiha Amjad & Nida Mansoora & Samia Yaseen & Afifa Kamal & Beenish Butt & Humera Matloob & Saad A. M. Alamri & Sulaiman A. Alrumman & Ebrahem M. Eid & Muhammad Shahbaz, 2021. "Combined Use of Endophytic Bacteria and Pre-Sowing Treatment of Thiamine Mitigates the Adverse Effects of Drought Stress in Wheat ( Triticum aestivum L.) Cultivars," Sustainability, MDPI, vol. 13(12), pages 1-15, June.
    9. Jorge F. S. Ferreira & Devinder Sandhu & Xuan Liu & Jonathan J. Halvorson, 2018. "Spinach ( Spinacea oleracea L.) Response to Salinity: Nutritional Value, Physiological Parameters, Antioxidant Capacity, and Gene Expression," Agriculture, MDPI, vol. 8(10), pages 1-16, October.
    10. Gulom Bekmirzaev & Baghdad Ouddane & Jose Beltrao & Mukhamadkhon Khamidov & Yoshiharu Fujii & Akifumi Sugiyama, 2021. "Effects of Salinity on the Macro- and Micronutrient Contents of a Halophytic Plant Species ( Portulaca oleracea L.)," Land, MDPI, vol. 10(5), pages 1-13, May.
    11. Okuhle Mndi & Avela Sogoni & Muhali Olaide Jimoh & Carolyn Margaret Wilmot & Fanie Rautenbach & Charles Petrus Laubscher, 2023. "Interactive Effects of Salinity Stress and Irrigation Intervals on Plant Growth, Nutritional Value, and Phytochemical Content in Mesembryanthemum crystallinum L," Agriculture, MDPI, vol. 13(5), pages 1-21, May.
    12. Li, Hao & Hou, Xuemin & Bertin, Nadia & Ding, Risheng & Du, Taisheng, 2023. "Quantitative responses of tomato yield, fruit quality and water use efficiency to soil salinity under different water regimes in Northwest China," Agricultural Water Management, Elsevier, vol. 277(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gheysari, Mahdi & Mirlatifi, Seyed Majid & Bannayan, Mohammad & Homaee, Mehdi & Hoogenboom, Gerrit, 2009. "Interaction of water and nitrogen on maize grown for silage," Agricultural Water Management, Elsevier, vol. 96(5), pages 809-821, May.
    2. Yang, Hui & Du, Taisheng & Mao, Xiaomin & Ding, Risheng & Shukla, Manoj K., 2019. "A comprehensive method of evaluating the impact of drought and salt stress on tomato growth and fruit quality based on EPIC growth model," Agricultural Water Management, Elsevier, vol. 213(C), pages 116-127.
    3. Kheir, Ahmed M.S. & Alrajhi, Abdullah A. & Ghoneim, Adel M. & Ali, Esmat F. & Magrashi, Ali & Zoghdan, Medhat G. & Abdelkhalik, Sedhom A.M. & Fahmy, Ahmed E. & Elnashar, Abdelrazek, 2021. "Modeling deficit irrigation-based evapotranspiration optimizes wheat yield and water productivity in arid regions," Agricultural Water Management, Elsevier, vol. 256(C).
    4. Sohoulande, Clement D.D. & Stone, Kenneth & Szogi, Ariel & Bauer, Phil, 2019. "An investigation of seasonal precipitation patterns for rainfed agriculture in the Southeastern region of the United States," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    5. Valdés, R. & Ochoa, J. & Franco, J.A. & Sánchez-Blanco, M.J. & Bañón, S., 2015. "Saline irrigation scheduling for potted geranium based on soil electrical conductivity and moisture sensors," Agricultural Water Management, Elsevier, vol. 149(C), pages 123-130.
    6. Yarami, Najmeh & Sepaskhah, Ali Reza, 2015. "Saffron response to irrigation water salinity, cow manure and planting method," Agricultural Water Management, Elsevier, vol. 150(C), pages 57-66.
    7. Ould Ahmed, B.A. & Inoue, M. & Moritani, S., 2010. "Effect of saline water irrigation and manure application on the available water content, soil salinity, and growth of wheat," Agricultural Water Management, Elsevier, vol. 97(1), pages 165-170, January.
    8. Nandan, Rohit & Woo, Dong K. & Kumar, Praveen & Adinarayana, J., 2021. "Impact of irrigation scheduling methods on corn yield under climate change," Agricultural Water Management, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:190:y:2017:i:c:p:31-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.