IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v121y2013icp102-112.html
   My bibliography  Save this article

Response of taro (Colocasia esculenta L. Schott) landraces to varying water regimes under a rainshelter

Author

Listed:
  • Mabhaudhi, T.
  • Modi, A.T.
  • Beletse, Y.G.

Abstract

Taro [Colocasia esculenta (L.) Schott] is an underutilised crop in sub-Saharan Africa due to lack of agronomic research on it. There is no information describing water-use and drought tolerance of local taro landraces. Therefore, the objective of this study was to evaluate growth, yield and water-use of three South African landraces of taro under varying water regimes. Three taro landraces [Dumbe Lomfula (DL), KwaNgwanase (KW) and Umbumbulu (UM)] were planted in a rainshelter (14, October, 2010 and 8, September, 2011) at Roodeplaat, Pretoria, South Africa. Three levels of irrigation [30%, 60% and 100% crop water requirement (ETa)] were applied three times a week using drip irrigation. Emergence, plant height, leaf number, leaf area index (LAI) and stomatal conductance were measured in situ. Root length, fresh and dry mass were obtained by destructive sampling. Yield, yield components and water-use efficiency were determined at harvest. Taro landraces showed slow and uneven emergence. Stomatal conductance was respectively, 4% and 23% lower at 60% and 30% ETa relative to 100% ETa. Such a decline was clearer in the UM landrace, suggesting greater stomatal regulation in the UM landrace compared with KW and DL landraces. Plant growth parameters (plant height, leaf number and LAI) were shown to decrease by between 5% and 19% at 60% and 30% ETa, respectively, evapotranspiration relative to 100% ETa. The KW and DL landraces were shown to decrease the most while the UM landrace had moderate reductions in growth. Taro yield was 15% and 46% higher at optimum irrigation relative to 60% ETa and 30% ETa, respectively. Water-use efficiency was relatively unchanged (0.22–0.24kgm−3) across varying water regimes. On average, the UM landrace had 113% higher WUE than the KW landrace. These findings can be used to differentiate the landraces on the basis of potential drought tolerance.

Suggested Citation

  • Mabhaudhi, T. & Modi, A.T. & Beletse, Y.G., 2013. "Response of taro (Colocasia esculenta L. Schott) landraces to varying water regimes under a rainshelter," Agricultural Water Management, Elsevier, vol. 121(C), pages 102-112.
  • Handle: RePEc:eee:agiwat:v:121:y:2013:i:c:p:102-112
    DOI: 10.1016/j.agwat.2013.01.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377413000218
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2013.01.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Passioura, John, 2006. "Increasing crop productivity when water is scarce--from breeding to field management," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 176-196, February.
    2. Unlu, Mustafa & Kanber, Riza & Senyigit, Ulas & Onaran, Huseyin & Diker, Kenan, 2006. "Trickle and sprinkler irrigation of potato (Solanum tuberosum L.) in the Middle Anatolian Region in Turkey," Agricultural Water Management, Elsevier, vol. 79(1), pages 43-71, January.
    3. Pandey, R. K. & Maranville, J. W. & Chetima, M. M., 2000. "Deficit irrigation and nitrogen effects on maize in a Sahelian environment: II. Shoot growth, nitrogen uptake and water extraction," Agricultural Water Management, Elsevier, vol. 46(1), pages 15-27, November.
    4. Badr, M.A. & El-Tohamy, W.A. & Zaghloul, A.M., 2012. "Yield and water use efficiency of potato grown under different irrigation and nitrogen levels in an arid region," Agricultural Water Management, Elsevier, vol. 110(C), pages 9-15.
    5. J. R. Petit & J. Jouzel & D. Raynaud & N. I. Barkov & J.-M. Barnola & I. Basile & M. Bender & J. Chappellaz & M. Davis & G. Delaygue & M. Delmotte & V. M. Kotlyakov & M. Legrand & V. Y. Lipenkov & C. , 1999. "Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica," Nature, Nature, vol. 399(6735), pages 429-436, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abel Chemura & Dumisani Kutywayo & Danisile Hikwa & Christoph Gornott, 2022. "Climate change and cocoyam (Colocasia esculenta (L.) Schott) production: assessing impacts and potential adaptation strategies in Zimbabwe," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(6), pages 1-20, August.
    2. Nyathi, M.K. & Du Plooy, C.P. & Van Halsema, G.E. & Stomph, T.J. & Annandale, J.G. & Struik, P.C., 2019. "The dual-purpose use of orange-fleshed sweet potato (Ipomoea batatas var. Bophelo) for improved nutritional food security," Agricultural Water Management, Elsevier, vol. 217(C), pages 23-37.
    3. Gitari, Harun I. & Gachene, Charles K.K. & Karanja, Nancy N. & Kamau, Solomon & Nyawade, Shadrack & Sharma, Kalpana & Schulte-Geldermann, Elmar, 2018. "Optimizing yield and economic returns of rain-fed potato (Solanum tuberosum L.) through water conservation under potato-legume intercropping systems," Agricultural Water Management, Elsevier, vol. 208(C), pages 59-66.
    4. Innocent Maseko & Tafadzwanashe Mabhaudhi & Samson Tesfay & Hintsa Tesfamicael Araya & Melake Fezzehazion & Christian Phillipus Du Plooy, 2017. "African Leafy Vegetables: A Review of Status, Production and Utilization in South Africa," Sustainability, MDPI, vol. 10(1), pages 1-16, December.
    5. Admire Isaac Tichafa Shayanowako & Oliver Morrissey & Alberto Tanzi & Maud Muchuweti & Guillermina M. Mendiondo & Sean Mayes & Albert T. Modi & Tafadzwanashe Mabhaudhi, 2021. "African Leafy Vegetables for Improved Human Nutrition and Food System Resilience in Southern Africa: A Scoping Review," Sustainability, MDPI, vol. 13(5), pages 1-20, March.
    6. Nyathi, M.K. & Van Halsema, G.E. & Beletse, Y.G. & Annandale, J.G. & Struik, P.C., 2018. "Nutritional water productivity of selected leafy vegetables," Agricultural Water Management, Elsevier, vol. 209(C), pages 111-122.
    7. Pauline Chivenge & Tafadzwanashe Mabhaudhi & Albert T. Modi & Paramu Mafongoya, 2015. "The Potential Role of Neglected and Underutilised Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa," IJERPH, MDPI, vol. 12(6), pages 1-27, May.
    8. Chimonyo, V.G.P. & Modi, A.T. & Mabhaudhi, T., 2016. "Water use and productivity of a sorghum–cowpea–bottle gourd intercrop system," Agricultural Water Management, Elsevier, vol. 165(C), pages 82-96.
    9. Pereira, L.S. & Paredes, P. & López-Urrea, R. & Hunsaker, D.J. & Mota, M. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for vegetable crops, an update of FAO56 crop water requirements approach," Agricultural Water Management, Elsevier, vol. 243(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koffi Djaman & Suat Irmak & Komlan Koudahe & Samuel Allen, 2021. "Irrigation Management in Potato ( Solanum tuberosum L.) Production: A Review," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    2. Trevor W. Crosby & Yi Wang, 2021. "Effects of Different Irrigation Management Practices on Potato ( Solanum tuberosum L.)," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    3. Zhou, Zhenjiang & Plauborg, Finn & Parsons, David & Andersen, Mathias Neumann, 2018. "Potato canopy growth, yield and soil water dynamics under different irrigation systems," Agricultural Water Management, Elsevier, vol. 202(C), pages 9-18.
    4. Wang, Haidong & Cheng, Minghui & Zhang, Shaohui & Fan, Junliang & Feng, Hao & Zhang, Fucang & Wang, Xiukang & Sun, Lijun & Xiang, Youzhen, 2021. "Optimization of irrigation amount and fertilization rate of drip-fertigated potato based on Analytic Hierarchy Process and Fuzzy Comprehensive Evaluation methods," Agricultural Water Management, Elsevier, vol. 256(C).
    5. Ierna, Anita & Mauromicale, Giovanni, 2018. "Potato growth, yield and water productivity response to different irrigation and fertilization regimes," Agricultural Water Management, Elsevier, vol. 201(C), pages 21-26.
    6. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    7. Badr, M.A. & Abou-Hussein, S.D. & El-Tohamy, W.A., 2016. "Tomato yield, nitrogen uptake and water use efficiency as affected by planting geometry and level of nitrogen in an arid region," Agricultural Water Management, Elsevier, vol. 169(C), pages 90-97.
    8. Badr, M.A. & El-Tohamy, W.A. & Zaghloul, A.M., 2012. "Yield and water use efficiency of potato grown under different irrigation and nitrogen levels in an arid region," Agricultural Water Management, Elsevier, vol. 110(C), pages 9-15.
    9. Stepanovic, Strahinja & Rudnick, Daran & Kruger, Greg, 2021. "Impact of maize hybrid selection on water productivity under deficit irrigation in semiarid western Nebraska," Agricultural Water Management, Elsevier, vol. 244(C).
    10. Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    11. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    12. Nandi, R. & Mondal, K. & Singh, K.C. & Saha, M. & Bandyopadhyay, P.K. & Ghosh, P.K., 2021. "Yield-water relationships of lentil grown under different rice establishments in Lower Gangetic Plain of India," Agricultural Water Management, Elsevier, vol. 246(C).
    13. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    14. Motazedian, Azam & Kazemeini, Seyed Abdolreza & Bahrani, Mohammad Jafar, 2019. "Sweet corn growth and GrainYield as influenced by irrigation and wheat residue management," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    15. Xing, Yingying & Zhang, Teng & Jiang, Wenting & Li, Peng & Shi, Peng & Xu, Guoce & Cheng, Shengdong & Cheng, Yuting & Fan, Zhang & Wang, Xiukang, 2022. "Effects of irrigation and fertilization on different potato varieties growth, yield and resources use efficiency in the Northwest China," Agricultural Water Management, Elsevier, vol. 261(C).
    16. Zhao Chen & Xv Liu & Junpeng Niu & Wennan Zhou & Tian Zhao & Wenbo Jiang & Jian Cui & Robert Kallenbach & Quanzhen Wang, 2019. "Optimizing irrigation and nitrogen fertilization for seed yield in western wheatgrass [Pascopyrum smithii (Rydb.) Á. Löve] using a large multi-factorial field design," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-21, June.
    17. Dai, Zhiguang & Fei, Liangjun & Huang, Deliang & Zeng, Jian & Chen, Lin & Cai, Yaohui, 2019. "Coupling effects of irrigation and nitrogen levels on yield, water and nitrogen use efficiency of surge-root irrigated jujube in a semiarid region," Agricultural Water Management, Elsevier, vol. 213(C), pages 146-154.
    18. Puetz, Stephen J. & Prokoph, Andreas & Borchardt, Glenn & Mason, Edward W., 2014. "Evidence of synchronous, decadal to billion year cycles in geological, genetic, and astronomical events," Chaos, Solitons & Fractals, Elsevier, vol. 62, pages 55-75.
    19. Comas, Louise H. & Trout, Thomas J. & DeJonge, Kendall C. & Zhang, Huihui & Gleason, Sean M., 2019. "Water productivity under strategic growth stage-based deficit irrigation in maize," Agricultural Water Management, Elsevier, vol. 212(C), pages 433-440.
    20. Qing Ji & Xiaoping Pang & Xi Zhao, 2014. "A bibliometric analysis of research on Antarctica during 1993–2012," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(3), pages 1925-1939, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:121:y:2013:i:c:p:102-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.