IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v107y2012icp86-93.html
   My bibliography  Save this article

Evapotranspiration and crop coefficient for sprinkler-irrigated cotton crop in Apodi Plateau semiarid lands of Brazil

Author

Listed:
  • Bezerra, Bergson G.
  • da Silva, Bernardo B.
  • Bezerra, José R.C.
  • Sofiatti, Valdinei
  • dos Santos, Carlos A.C.

Abstract

During the twentieth century, the cotton crop was the main agricultural product in the semiarid regions of Brazil, with over 3.2 million hectares planted. However, due to structural problems, this activity became uncompetitive and economically unfeasible, being virtually wiped out in the eighties. The revival of cotton growing in semiarid lands of Brazil is important to the regional economy. However, the adoptions of new technologies mainly related to the water use efficiency are needed. Thus, accurate ETc estimates are required for efficient irrigation management. The Kc method is a practical and reliable technique for estimating ETc, and has been vastly applied by the farmers in the semiarid lands of Brazil. However, the use of Kc values listed in FAO-56 can contribute to ETc estimates that are substantially different from actual ETc. Hence the importance of determining Kc values experimentally. A field study on sprinkler-irrigated cotton was carried out during the dry seasons of 2008 and 2009 years in the Apodi Plateau, Brazilian semiarid lands. This study aims to determine ETc and the Kc curve values using the Bowen Ratio Energy Balance (BREB) technique. The locally developed Kc curves are compared with generalized FAO Kc values adjusted for local climate and management. The ETc values were 716mm and 754mm in 2008 and 2009, respectively. These values were higher than those observed in other areas of Brazilian semiarid. These differences are attributed to weather heterogeneity in the region. The average of Kc values were 0.75, 1.09 and 0.80 for initial, middle and end, of growing season, respectively. These values were lower than the Kc-FAO-Adjusted to local conditions. For this reason, ETc values obtained from Kc-FAO-Adjusted were overestimated by 12% in both the years. The irrigation scheduling based on the Kc-FAO-Adjusted increases production cost and yield loss.

Suggested Citation

  • Bezerra, Bergson G. & da Silva, Bernardo B. & Bezerra, José R.C. & Sofiatti, Valdinei & dos Santos, Carlos A.C., 2012. "Evapotranspiration and crop coefficient for sprinkler-irrigated cotton crop in Apodi Plateau semiarid lands of Brazil," Agricultural Water Management, Elsevier, vol. 107(C), pages 86-93.
  • Handle: RePEc:eee:agiwat:v:107:y:2012:i:c:p:86-93
    DOI: 10.1016/j.agwat.2012.01.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377412000297
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2012.01.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lopez-Urrea, R. & Martin de Santa Olalla, F. & Fabeiro, C. & Moratalla, A., 2006. "Testing evapotranspiration equations using lysimeter observations in a semiarid climate," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 15-26, September.
    2. de Azevedo, Pedro V. & da Silva, Bernardo B. & da Silva, Vicente P. R., 2003. "Water requirements of irrigated mango orchards in northeast Brazil," Agricultural Water Management, Elsevier, vol. 58(3), pages 241-254, February.
    3. Teixeira, A.H. de C. & Bastiaanssen, W.G.M. & Bassoi, L.H., 2007. "Crop water parameters of irrigated wine and table grapes to support water productivity analysis in the Sao Francisco river basin, Brazil," Agricultural Water Management, Elsevier, vol. 94(1-3), pages 31-42, December.
    4. Allen, Richard G. & Pereira, Luis S. & Howell, Terry A. & Jensen, Marvin E., 2011. "Evapotranspiration information reporting: I. Factors governing measurement accuracy," Agricultural Water Management, Elsevier, vol. 98(6), pages 899-920, April.
    5. Mohan, S. & Arumugam, N., 1994. "Crop coefficients of major crops in South India," Agricultural Water Management, Elsevier, vol. 26(1-2), pages 67-80, September.
    6. Hou, L.G. & Xiao, H.L. & Si, J.H. & Xiao, S.C. & Zhou, M.X. & Yang, Y.G., 2010. "Evapotranspiration and crop coefficient of Populus euphratica Oliv forest during the growing season in the extreme arid region northwest China," Agricultural Water Management, Elsevier, vol. 97(2), pages 351-356, February.
    7. Piccinni, Giovanni & Ko, Jonghan & Marek, Thomas & Howell, Terry, 2009. "Determination of growth-stage-specific crop coefficients (KC) of maize and sorghum," Agricultural Water Management, Elsevier, vol. 96(12), pages 1698-1704, December.
    8. Grismer, M. E., 2002. "Regional cotton lint yield, ETc and water value in Arizona and California," Agricultural Water Management, Elsevier, vol. 54(3), pages 227-242, April.
    9. Allen, Richard G. & Pruitt, William O. & Wright, James L. & Howell, Terry A. & Ventura, Francesca & Snyder, Richard & Itenfisu, Daniel & Steduto, Pasquale & Berengena, Joaquin & Yrisarry, Javier Basel, 2006. "A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 1-22, March.
    10. de Azevedo, Pedro V. & de Souza, Cleber B. & da Silva, Bernardo B. & da Silva, Vicente P.R., 2007. "Water requirements of pineapple crop grown in a tropical environment, Brazil," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 201-208, March.
    11. Ko, Jonghan & Piccinni, Giovanni & Marek, Thomas & Howell, Terry, 2009. "Determination of growth-stage-specific crop coefficients (Kc) of cotton and wheat," Agricultural Water Management, Elsevier, vol. 96(12), pages 1691-1697, December.
    12. Perry, Chris & Steduto, Pasquale & Allen, Richard. G. & Burt, Charles M., 2009. "Increasing productivity in irrigated agriculture: Agronomic constraints and hydrological realities," Agricultural Water Management, Elsevier, vol. 96(11), pages 1517-1524, November.
    13. López-Urrea, R. & Montoro, A. & González-Piqueras, J. & López-Fuster, P. & Fereres, E., 2009. "Water use of spring wheat to raise water productivity," Agricultural Water Management, Elsevier, vol. 96(9), pages 1305-1310, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Komlan Koudahe & Aleksey Y. Sheshukov & Jonathan Aguilar & Koffi Djaman, 2021. "Irrigation-Water Management and Productivity of Cotton: A Review," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    2. Gloaguen, Romain M. & Rowland, Diane L. & Brym, Zachary T. & Wilson, Chris. H. & Chun, Hyen Chung & Langham, Ray, 2021. "A METHOD FOR DEVELOPING IRRIGATION DECISION SUPPORT SYSTEMS de novo: EXAMPLE OF SESAME (Sesamum indicum L.) A KNOWN DROUGHT TOLERANT SPECIES," Agricultural Water Management, Elsevier, vol. 243(C).
    3. Escarabajal-Henarejos, D. & Fernández-Pacheco, D.G. & Molina-Martínez, J.M. & Martínez-Molina, L. & Ruiz-Canales, A., 2015. "Selection of device to determine temperature gradients for estimating evapotranspiration using energy balance method," Agricultural Water Management, Elsevier, vol. 151(C), pages 136-147.
    4. Facchi, A. & Gharsallah, O. & Corbari, C. & Masseroni, D. & Mancini, M. & Gandolfi, C., 2013. "Determination of maize crop coefficients in humid climate regime using the eddy covariance technique," Agricultural Water Management, Elsevier, vol. 130(C), pages 131-141.
    5. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    6. Tian, Fuqiang & Yang, Pengju & Hu, Hongchang & Liu, Hui, 2017. "Energy balance and canopy conductance for a cotton field under film mulched drip irrigation in an arid region of northwestern China," Agricultural Water Management, Elsevier, vol. 179(C), pages 110-121.
    7. Kumar, Vipan & Udeigwe, Theophilus K. & Clawson, Ernest L. & Rohli, Robert V. & Miller, Donnie K., 2015. "Crop water use and stage-specific crop coefficients for irrigated cotton in the mid-south, United States," Agricultural Water Management, Elsevier, vol. 156(C), pages 63-69.
    8. Yang, Pengju & Hu, Hongchang & Tian, Fuqiang & Zhang, Zhi & Dai, Chao, 2016. "Crop coefficient for cotton under plastic mulch and drip irrigation based on eddy covariance observation in an arid area of northwestern China," Agricultural Water Management, Elsevier, vol. 171(C), pages 21-30.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Zhao, Nana & Liu, Yu & Cai, Jiabing & Paredes, Paula & Rosa, Ricardo D. & Pereira, Luis S., 2013. "Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component," Agricultural Water Management, Elsevier, vol. 117(C), pages 93-105.
    3. Kumar, Vipan & Udeigwe, Theophilus K. & Clawson, Ernest L. & Rohli, Robert V. & Miller, Donnie K., 2015. "Crop water use and stage-specific crop coefficients for irrigated cotton in the mid-south, United States," Agricultural Water Management, Elsevier, vol. 156(C), pages 63-69.
    4. Miao, Qingfeng & Rosa, Ricardo D. & Shi, Haibin & Paredes, Paula & Zhu, Li & Dai, Jiaxin & Gonçalves, José M. & Pereira, Luis S., 2016. "Modeling water use, transpiration and soil evaporation of spring wheat–maize and spring wheat–sunflower relay intercropping using the dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 165(C), pages 211-229.
    5. Pereira, L.S. & Paredes, P. & López-Urrea, R. & Hunsaker, D.J. & Mota, M. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for vegetable crops, an update of FAO56 crop water requirements approach," Agricultural Water Management, Elsevier, vol. 243(C).
    6. Rallo, G. & Paço, T.A. & Paredes, P. & Puig-Sirera, À. & Massai, R. & Provenzano, G. & Pereira, L.S., 2021. "Updated single and dual crop coefficients for tree and vine fruit crops," Agricultural Water Management, Elsevier, vol. 250(C).
    7. Komlan Koudahe & Aleksey Y. Sheshukov & Jonathan Aguilar & Koffi Djaman, 2021. "Irrigation-Water Management and Productivity of Cotton: A Review," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    8. Gao, Yang & Yang, Linlin & Shen, Xiaojun & Li, Xinqiang & Sun, Jingsheng & Duan, Aiwang & Wu, Laosheng, 2014. "Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 146(C), pages 1-10.
    9. Muniandy, Josilva M. & Yusop, Zulkifli & Askari, Muhamad, 2016. "Evaluation of reference evapotranspiration models and determination of crop coefficient for Momordica charantia and Capsicum annuum," Agricultural Water Management, Elsevier, vol. 169(C), pages 77-89.
    10. Qiu, Rangjian & Li, Longan & Liu, Chunwei & Wang, Zhenchang & Zhang, Baozhong & Liu, Zhandong, 2022. "Evapotranspiration estimation using a modified crop coefficient model in a rotated rice-winter wheat system," Agricultural Water Management, Elsevier, vol. 264(C).
    11. Wang, Yunfei & Cai, Huanjie & Yu, Lianyu & Peng, Xiongbiao & Xu, Jiatun & Wang, Xiaowen, 2020. "Evapotranspiration partitioning and crop coefficient of maize in dry semi-humid climate regime," Agricultural Water Management, Elsevier, vol. 236(C).
    12. Drerup, Philipp & Brueck, Holger & Scherer, Heinrich W., 2017. "Evapotranspiration of winter wheat estimated with the FAO 56 approach and NDVI measurements in a temperate humid climate of NW Europe," Agricultural Water Management, Elsevier, vol. 192(C), pages 180-188.
    13. Amazirh, Abdelhakim & Er-Raki, Salah & Ojha, Nitu & Bouras, El houssaine & Rivalland, Vincent & Merlin, Olivier & Chehbouni, Abdelghani, 2022. "Assimilation of SMAP disaggregated soil moisture and Landsat land surface temperature to improve FAO-56 estimates of ET in semi-arid regions," Agricultural Water Management, Elsevier, vol. 260(C).
    14. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Wang, T. & López-Urrea, R. & Cancela, J.J. & Allen, R.G., 2020. "Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data," Agricultural Water Management, Elsevier, vol. 241(C).
    15. Escarabajal-Henarejos, D. & Fernández-Pacheco, D.G. & Molina-Martínez, J.M. & Martínez-Molina, L. & Ruiz-Canales, A., 2015. "Selection of device to determine temperature gradients for estimating evapotranspiration using energy balance method," Agricultural Water Management, Elsevier, vol. 151(C), pages 136-147.
    16. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.
    17. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    18. Pozníková, Gabriela & Fischer, Milan & van Kesteren, Bram & Orság, Matěj & Hlavinka, Petr & Žalud, Zdeněk & Trnka, Miroslav, 2018. "Quantifying turbulent energy fluxes and evapotranspiration in agricultural field conditions: A comparison of micrometeorological methods," Agricultural Water Management, Elsevier, vol. 209(C), pages 249-263.
    19. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Mota, M. & Wang, T., 2021. "Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization," Agricultural Water Management, Elsevier, vol. 252(C).
    20. Dzikiti, S. & Lotter, D. & Mpandeli, S. & Nhamo, L., 2022. "Assessing the energy and water balance dynamics of rain-fed rooibos tea crops (Aspalathus linearis) under changing Mediterranean climatic conditions," Agricultural Water Management, Elsevier, vol. 274(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:107:y:2012:i:c:p:86-93. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.