Advanced Search
MyIDEAS: Login

On skewness and kurtosis of econometric estimators

Contents:

Author Info

  • Yong Bao
  • Aman Ullah

Abstract

We derive the approximate results for two standardized measures of deviation from normality, namely, the skewness and excess kurtosis coefficients, for a class of econometric estimators. The results are built on a stochastic expansion of the moment condition used to identify the econometric estimator. The approximate results can be used not only to study the finite sample behaviour of a particular estimator, but also to compare the finite sample properties of two asymptotically equivalent estimators. We apply the approximate results to the spatial autoregressive model and find that our results approximate the non-normal behaviours of the maximum likelihood estimator reasonably well. However, when the weights matrix becomes denser, the finite sample distribution of the maximum likelihood estimator departs more severely from normality and our results provide less accurate approximation. Copyright � 2009 The Author(s). Journal compilation � Royal Economic Society 2009

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1368-423X.2009.00289.x
File Function: link to full text
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Royal Economic Society in its journal Econometrics Journal.

Volume (Year): 12 (2009)
Issue (Month): 2 (07)
Pages: 232-247

as in new window
Handle: RePEc:ect:emjrnl:v:12:y:2009:i:2:p:232-247

Contact details of provider:
Postal: Office of the Secretary-General, School of Economics and Finance, University of St. Andrews, St. Andrews, Fife, KY16 9AL, UK
Phone: +44 1334 462479
Email:
Web page: http://www.res.org.uk/
More information through EDIRC

Order Information:
Web: http://www.ectj.org

Related research

Keywords:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Xiaohu Wang & Peter C.B. Phillips & Jun Yu, 2011. "Bias in Estimating Multivariate and Univariate Diffusions," Cowles Foundation Discussion Papers 1778, Cowles Foundation for Research in Economics, Yale University.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:12:y:2009:i:2:p:232-247. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.