IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v33y2003i02p173-191_01.html
   My bibliography  Save this article

A Unified Approach to Generate Risk Measures

Author

Listed:
  • Goovaerts, Marc J.
  • Kaas, Rob
  • Dhaene, Jan
  • Tang, Qihe

Abstract

The paper derives many existing risk measures and premium principles by minimizing a Markov bound for the tail probability. Our approach involves two exogenous functions v(S) and φ(S, π) and another exogenous parameter α ≤ 1. Minimizing a general Markov bound leads to the following unifying equation: E [φ (S, π)] = αE [v (S)].For any random variable, the risk measure π is the solution to the unifying equation. By varying the functions φ and v, the paper derives the mean value principle, the zero-utility premium principle, the Swiss premium principle, Tail VaR, Yaari's dual theory of risk, mixture of Esscher principles and more. The paper also discusses combining two risks with super-additive properties and sub-additive properties. In addition, we recall some of the important characterization theorems of these risk measures.

Suggested Citation

  • Goovaerts, Marc J. & Kaas, Rob & Dhaene, Jan & Tang, Qihe, 2003. "A Unified Approach to Generate Risk Measures," ASTIN Bulletin, Cambridge University Press, vol. 33(2), pages 173-191, November.
  • Handle: RePEc:cup:astinb:v:33:y:2003:i:02:p:173-191_01
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036100013428/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kevin Dowd & David Blake, 2006. "After VaR: The Theory, Estimation, and Insurance Applications of Quantile‐Based Risk Measures," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(2), pages 193-229, June.
    2. Goovaerts, Marc J. & Kaas, Rob & Dhaene, Jan & Tang, Qihe, 2004. "Some new classes of consistent risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 34(3), pages 505-516, June.
    3. Ahn, Jae Youn & Shyamalkumar, Nariankadu D., 2014. "Asymptotic theory for the empirical Haezendonck–Goovaerts risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 78-90.
    4. Rosazza Gianin, Emanuela, 2006. "Risk measures via g-expectations," Insurance: Mathematics and Economics, Elsevier, vol. 39(1), pages 19-34, August.
    5. Goovaerts, Marc & Linders, Daniël & Van Weert, Koen & Tank, Fatih, 2012. "On the interplay between distortion, mean value and Haezendonck–Goovaerts risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 10-18.
    6. Roberto Cominetti & Alfredo Torrico, 2016. "Additive Consistency of Risk Measures and Its Application to Risk-Averse Routing in Networks," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1510-1521, November.
    7. Stadje, Mitja, 2010. "Extending dynamic convex risk measures from discrete time to continuous time: A convergence approach," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 391-404, December.
    8. Goovaerts, Marc J. & Kaas, Rob & Laeven, Roger J.A. & Tang, Qihe, 2004. "A comonotonic image of independence for additive risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 581-594, December.
    9. Goovaerts, Marc J. & Kaas, Rob & Laeven, Roger J.A., 2011. "Worst case risk measurement: Back to the future?," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 380-392.
    10. Bellini, Fabio & Rosazza Gianin, Emanuela, 2008. "On Haezendonck risk measures," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 986-994, June.
    11. Major, John A., 2018. "Distortion measures and homogeneous financial derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 82-91.
    12. Johannes Leitner, 2008. "Fair (intra-bank transfer) prices for credits with stochastic recovery," Annals of Finance, Springer, vol. 4(2), pages 243-253, March.
    13. Claude Lefèvre & Stéphane Loisel, 2013. "On multiply monotone distributions, continuous or discrete, with applications," Post-Print hal-00750562, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:33:y:2003:i:02:p:173-191_01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.