IDEAS home Printed from https://ideas.repec.org/a/caa/jnlrae/v70y2024i1id20-2023-rae.html
   My bibliography  Save this article

Enhancing melon yield through a low-cost drip irrigation control system with time and soil sensor

Author

Listed:
  • Thawatchai Thongleam

    (Faculty of Science and Technology, Nakhon Pathom Rajabhat University, Nakhon Pathom, Thailand)

  • Kriengkrai Meethaworn

    (Faculty of Science and Technology, Nakhon Pathom Rajabhat University, Nakhon Pathom, Thailand)

  • Sanya Kuankid

    (Faculty of Science and Technology, Nakhon Pathom Rajabhat University, Nakhon Pathom, Thailand)

Abstract

Drip irrigation is a highly efficient method for watering crops, as it delivers water directly to the roots and minimises wastage due to evaporation or runoff. This paper presents the development and implementation of a low-cost drip irrigation control system that uses both time- and soil sensor-based approaches. The system's efficiency was compared through a field experiment of melon growing, divided into three categories and four replications using a completely randomised design. The treatments include: T1 [time-based irrigation (TBI)], T2 [soil moisture-based irrigation (SMI)], and T3 [hand watering irrigation system (HWI)]. Results indicated that the TBI technique resulted in faster plant growth compared to the other treatments, as evidenced by increased leaf widths, lengths, numbers, and stem diameter. All irrigation techniques showed significant differences in yield characteristics, with TBI and SMI producing no differences in the first flowering day of female fruit widths, lengths, and weight of melon. However, the HWI treatment resulted in lower fruit length and weight yields. Cost analysis showed that the system is beneficial as a very low-cost device that is affordable, precise, and useful for measuring and controlling irrigation-related parameters for melon cultivation.

Suggested Citation

  • Thawatchai Thongleam & Kriengkrai Meethaworn & Sanya Kuankid, 2024. "Enhancing melon yield through a low-cost drip irrigation control system with time and soil sensor," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 70(1), pages 13-22.
  • Handle: RePEc:caa:jnlrae:v:70:y:2024:i:1:id:20-2023-rae
    DOI: 10.17221/20/2023-RAE
    as

    Download full text from publisher

    File URL: http://rae.agriculturejournals.cz/doi/10.17221/20/2023-RAE.html
    Download Restriction: free of charge

    File URL: http://rae.agriculturejournals.cz/doi/10.17221/20/2023-RAE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/20/2023-RAE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Navarro-Hellín, H. & Torres-Sánchez, R. & Soto-Valles, F. & Albaladejo-Pérez, C. & López-Riquelme, J.A. & Domingo-Miguel, R., 2015. "A wireless sensors architecture for efficient irrigation water management," Agricultural Water Management, Elsevier, vol. 151(C), pages 64-74.
    2. Sensoy, Suat & Ertek, Ahmet & Gedik, Ibrahim & Kucukyumuk, Cenk, 2007. "Irrigation frequency and amount affect yield and quality of field-grown melon (Cucumis melo L.)," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 269-274, March.
    3. Visconti, Fernando & Salvador, Alejandra & Navarro, Pilar & de Paz, José Miguel, 2019. "Effects of three irrigation systems on ‘Piel de sapo’ melon yield and quality under salinity conditions," Agricultural Water Management, Elsevier, vol. 226(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cáceres, Rafaela & Pol, Enric & Narváez, Lola & Puerta, Anna & Marfà, Oriol, 2017. "Web app for real-time monitoring of the performance of constructed wetlands treating horticultural leachates," Agricultural Water Management, Elsevier, vol. 183(C), pages 177-185.
    2. Baoying Shan & Ping Guo & Shanshan Guo & Zhong Li, 2019. "A Price-Forecast-Based Irrigation Scheduling Optimization Model under the Response of Fruit Quality and Price to Water," Sustainability, MDPI, vol. 11(7), pages 1-21, April.
    3. Achour, Yasmine & Ouammi, Ahmed & Zejli, Driss, 2021. "Technological progresses in modern sustainable greenhouses cultivation as the path towards precision agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    4. López-Riquelme, J.A. & Pavón-Pulido, N. & Navarro-Hellín, H. & Soto-Valles, F. & Torres-Sánchez, R., 2017. "A software architecture based on FIWARE cloud for Precision Agriculture," Agricultural Water Management, Elsevier, vol. 183(C), pages 123-135.
    5. Peng-Ming Yang & Song-Tao He, 2022. "The effects of arbuscular mycorrhizal fungi and deficit irrigation on the yield and sugar content of watermelons (Citrullus lanatus)," Horticultural Science, Czech Academy of Agricultural Sciences, vol. 49(4), pages 225-233.
    6. M. Safdar Munir & Imran Sarwar Bajwa & M. Asif Naeem & Bushra Ramzan, 2018. "Design and Implementation of an IoT System for Smart Energy Consumption and Smart Irrigation in Tunnel Farming," Energies, MDPI, vol. 11(12), pages 1-18, December.
    7. Oates, M.J. & Ramadan, K. & Molina-Martínez, J.M. & Ruiz-Canales, A., 2017. "Automatic fault detection in a low cost frequency domain (capacitance based) soil moisture sensor," Agricultural Water Management, Elsevier, vol. 183(C), pages 41-48.
    8. Zhang, Youliang & Feng, Shaoyuan & Wang, Fengxin & Feng, Ren & Nie, Wei, 2022. "Effects of drip discharge flux and soil wetted percentage on drip irrigated potato growth with film mulch," Agricultural Water Management, Elsevier, vol. 272(C).
    9. Li, Yi-Jie & Yuan, Bao-Zhong & Bie, Zhi-Long & Kang, Yaohu, 2012. "Effect of drip irrigation criteria on yield and quality of muskmelon grown in greenhouse conditions," Agricultural Water Management, Elsevier, vol. 109(C), pages 30-35.
    10. Zeng, Chun-Zhi & Bie, Zhi-Long & Yuan, Bao-Zhong, 2009. "Determination of optimum irrigation water amount for drip-irrigated muskmelon (Cucumis melo L.) in plastic greenhouse," Agricultural Water Management, Elsevier, vol. 96(4), pages 595-602, April.
    11. Sharma, Sat Pal & Leskovar, Daniel I. & Crosby, Kevin M. & Volder, Astrid & Ibrahim, A.M.H., 2014. "Root growth, yield, and fruit quality responses of reticulatus and inodorus melons (Cucumis melo L.) to deficit subsurface drip irrigation," Agricultural Water Management, Elsevier, vol. 136(C), pages 75-85.
    12. Garrigós, J. & Molina, J.M. & Alarcón, M. & Chazarra, J. & Ruiz-Canales, A. & Martínez, J.J., 2017. "Platform for the management of hydraulic chambers based on mobile devices and Bluetooth Low-Energy motes," Agricultural Water Management, Elsevier, vol. 183(C), pages 169-176.
    13. Cabello, M.J. & Castellanos, M.T. & Romojaro, F. & Martnez-Madrid, C. & Ribas, F., 2009. "Yield and quality of melon grown under different irrigation and nitrogen rates," Agricultural Water Management, Elsevier, vol. 96(5), pages 866-874, May.
    14. Liu, Hao & Li, Huanhuan & Ning, Huifeng & Zhang, Xiaoxian & Li, Shuang & Pang, Jie & Wang, Guangshuai & Sun, Jingsheng, 2019. "Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 226(C).
    15. Oates, M.J. & Fernández-López, A. & Ferrández-Villena, M. & Ruiz-Canales, A., 2017. "Temperature compensation in a low cost frequency domain (capacitance based) soil moisture sensor," Agricultural Water Management, Elsevier, vol. 183(C), pages 86-93.
    16. Blanco, Víctor & Domingo, Rafael & Pérez-Pastor, Alejandro & Blaya-Ros, Pedro José & Torres-Sánchez, Roque, 2018. "Soil and plant water indicators for deficit irrigation management of field-grown sweet cherry trees," Agricultural Water Management, Elsevier, vol. 208(C), pages 83-94.
    17. Alireza Abdollahi & Karim Rejeb & Abderahman Rejeb & Mohamed M. Mostafa & Suhaiza Zailani, 2021. "Wireless Sensor Networks in Agriculture: Insights from Bibliometric Analysis," Sustainability, MDPI, vol. 13(21), pages 1-22, October.
    18. Qu, Feng & Zhang, Qi & Jiang, Zhaoxi & Zhang, Caihong & Zhang, Zhi & Hu, Xiaohui, 2022. "Optimizing irrigation and fertilization frequency for greenhouse cucumber grown at different air temperatures using a comprehensive evaluation model," Agricultural Water Management, Elsevier, vol. 273(C).
    19. Wang, Jun & Huang, Guanhua & Li, Jiusheng & Zheng, Jianhua & Huang, Quanzhong & Liu, Haijun, 2017. "Effect of soil moisture-based furrow irrigation scheduling on melon (Cucumis melo L.) yield and quality in an arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 167-176.
    20. Yavuz, Duran & Seymen, Musa & Yavuz, Nurcan & Çoklar, Hacer & Ercan, Muhammet, 2021. "Effects of water stress applied at various phenological stages on yield, quality, and water use efficiency of melon," Agricultural Water Management, Elsevier, vol. 246(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlrae:v:70:y:2024:i:1:id:20-2023-rae. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.