IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpse/v65y2019i11id516-2019-pse.html
   My bibliography  Save this article

Weed suppressive ability of cover crops under water-limited conditions

Author

Listed:
  • Alexandra Schappert
  • Alexander I. Linn

    (Department of Weed Science, Institute of Phytomedicine, University of Hohenheim, Stuttgart, Germany)

  • Dominic J. Sturm

    (Department of Weed Science, Institute of Phytomedicine, University of Hohenheim, Stuttgart, Germany)

  • Roland Gerhards

    (Department of Weed Science, Institute of Phytomedicine, University of Hohenheim, Stuttgart, Germany)

Abstract

The water demand for cover crops (CC) should be considered to achieve competitive crop stands for weed control also under unfavorable conditions. This study aims to estimate the weed suppressive ability of winter CC, as Sinapis alba L., Phacelia tanacetifolia Benth., Vicia sativa L. and Avena strigosa Schreb., under a water-limited regime. The water deficit tolerance of different CC was determined in a greenhouse experiment by measuring the maximum quantum efficiency of photosystem II. Moreover, soil moisture, CC, and weed establishment were measured in field experiments in Southwest-Germany during two contrasting growing seasons in 2016 and 2017. A. strigosa showed a higher water deficit tolerance than S. alba in the greenhouse. In the field, A. strigosa showed the highest weed cover reduction (98%) in the field, along with an increasing effect on the soil moisture compared to the untreated control. S. alba performed most sensitive to water deficit in the greenhouse but reached the significantly highest weed control efficacy (94%) during the dry field season in 2016. Even though the selected CC showed differing sensitivities to water deficit in the greenhouse, their weed suppression ability was independent of the water supply under field conditions.

Suggested Citation

  • Alexandra Schappert & Alexander I. Linn & Dominic J. Sturm & Roland Gerhards, 2019. "Weed suppressive ability of cover crops under water-limited conditions," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 65(11), pages 541-548.
  • Handle: RePEc:caa:jnlpse:v:65:y:2019:i:11:id:516-2019-pse
    DOI: 10.17221/516/2019-PSE
    as

    Download full text from publisher

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/516/2019-PSE.html
    Download Restriction: free of charge

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/516/2019-PSE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/516/2019-PSE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ch. Kunz & D.J. Sturm & D. Varnholt & F. Walker & R. Gerhards, 2016. "Allelopathic effects and weed suppressive ability of cover crops," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 62(2), pages 60-66.
    2. Christian Ritz & Florent Baty & Jens C Streibig & Daniel Gerhard, 2015. "Dose-Response Analysis Using R," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natasja Krog Noer & Majken Pagter & Simon Bahrndorff & Anders Malmendal & Torsten Nygaard Kristensen, 2020. "Impacts of thermal fluctuations on heat tolerance and its metabolomic basis in Arabidopsis thaliana, Drosophila melanogaster, and Orchesella cincta," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-20, October.
    2. Pâmela Carvalho-Moore & Gulab Rangani & James Heiser & Douglas Findley & Steven J. Bowe & Nilda Roma-Burgos, 2021. "PPO2 Mutations in Amaranthus palmeri : Implications on Cross-Resistance," Agriculture, MDPI, vol. 11(8), pages 1-13, August.
    3. Yirgalem Eshete & Bamlaku Alamirew & Zewdie Bishaw, 2021. "Yield and Cost Effects of Plot-Level Wheat Seed Rates and Seed Recycling Practices in the East Gojam Zone, Amhara Region, Ethiopia: Application of the Dose–Response Model," Sustainability, MDPI, vol. 13(7), pages 1-14, March.
    4. Milan Brankov & Bruno Canella Vieira & Miloš Rajković & Milena Simić & Jelena Vukadinović & Violeta Mandić & Vesna Dragičević, 2023. "Herbicide drift vs. crop resilience - the influence of micro-rates," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 69(4), pages 161-169.
    5. Dominic J. STURM & Christoph KUNZ & Gerassimos PETEINATOS & Roland GERHARDS, 2017. "Do cover crop sowing date and fertilization affect field weed suppression?," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 63(2), pages 82-88.
    6. Min Pan & William C. Wright & Richard H. Chapple & Asif Zubair & Manbir Sandhu & Jake E. Batchelder & Brandt C. Huddle & Jonathan Low & Kaley B. Blankenship & Yingzhe Wang & Brittney Gordon & Payton A, 2021. "The chemotherapeutic CX-5461 primarily targets TOP2B and exhibits selective activity in high-risk neuroblastoma," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    7. Hyeong-Min Lee & William C. Wright & Min Pan & Jonathan Low & Duane Currier & Jie Fang & Shivendra Singh & Stephanie Nance & Ian Delahunty & Yuna Kim & Richard H. Chapple & Yinwen Zhang & Xueying Liu , 2023. "A CRISPR-drug perturbational map for identifying compounds to combine with commonly used chemotherapeutics," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    8. Fengxia Dong & Wendy Zeng, 2024. "Effects of Fall and Winter Cover Crops on Weed Suppression in the United States: A Meta-Analysis," Sustainability, MDPI, vol. 16(8), pages 1-16, April.
    9. Tea Pemovska & Johannes W. Bigenzahn & Ismet Srndic & Alexander Lercher & Andreas Bergthaler & Adrián César-Razquin & Felix Kartnig & Christoph Kornauth & Peter Valent & Philipp B. Staber & Giulio Sup, 2021. "Metabolic drug survey highlights cancer cell dependencies and vulnerabilities," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    10. Amany S. Ibrahim & Gomaa A. M. Ali & Amro Hassanein & Ahmed M. Attia & Ezzat R. Marzouk, 2022. "Toxicity and Uptake of CuO Nanoparticles: Evaluation of an Emerging Nanofertilizer on Wheat ( Triticum aestivum L.) Plant," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
    11. Christoph Kunz & Dominic J. Sturm & Markus Sökefeld & Roland Gerhards, 2017. "Weed suppression and early sugar beet development under different cover crop mulches," Plant Protection Science, Czech Academy of Agricultural Sciences, vol. 53(3), pages 187-193.
    12. Muhammad Javaid Akhter & Solvejg Kopp Mathiassen & Zelalem Eshetu Bekalu & Henrik Brinch-Pedersen & Per Kudsk, 2021. "Increased Activity of 5-Enolpyruvylshikimate-3-phosphate Synthase (EPSPS) Enzyme Describe the Natural Tolerance of Vulpia myuros to Glyphosate in Comparison with Apera spica-venti," Agriculture, MDPI, vol. 11(8), pages 1-15, July.
    13. Ricardo Alcántara-de la Cruz & Gabriel da Silva Amaral & Guilherme Moraes de Oliveira & Luiz Renato Rufino & Fernando Alves de Azevedo & Leonardo Bianco de Carvalho & Maria Fátima das Graças Fernandes, 2020. "Glyphosate Resistance in Amaranthus viridis in Brazilian Citrus Orchards," Agriculture, MDPI, vol. 10(7), pages 1-10, July.
    14. Travis J. Kochan & Sophia H. Nozick & Aliki Valdes & Sumitra D. Mitra & Bettina H. Cheung & Marine Lebrun-Corbin & Rachel L. Medernach & Madeleine B. Vessely & Jori O. Mills & Christopher M. R. Axline, 2023. "Klebsiella pneumoniae clinical isolates with features of both multidrug-resistance and hypervirulence have unexpectedly low virulence," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Juan Camilo Velásquez & Angela Das Cas Bundt & Edinalvo Rabaioli Camargo & André Andres & Vívian Ebeling Viana & Verónica Hoyos & Guido Plaza & Luis Antonio de Avila, 2021. "Florpyrauxifen-Benzyl Selectivity to Rice," Agriculture, MDPI, vol. 11(12), pages 1-19, December.
    16. Alexander Ingo LINN & Pavlína KOŠNAROVÁ & Josef SOUKUP & Roland GERHARDS, 2018. "Detecting herbicide-resistant Apera spica-venti with a chlorophyll fluorescence agar test," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(8), pages 386-392.
    17. J. M. Beman & S. M. Vargas & J. M. Wilson & E. Perez-Coronel & J. S. Karolewski & S. Vazquez & A. Yu & A. E. Cairo & M. E. White & I. Koester & L. I. Aluwihare & S. D. Wankel, 2021. "Substantial oxygen consumption by aerobic nitrite oxidation in oceanic oxygen minimum zones," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    18. Florian P. Bayer & Manuel Gander & Bernhard Kuster & Matthew The, 2023. "CurveCurator: a recalibrated F-statistic to assess, classify, and explore significance of dose–response curves," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Ignacio Amaro-Blanco & Yolanda Romano & Jose Antonio Palmerin & Raquel Gordo & Candelario Palma-Bautista & Rafael De Prado & María Dolores Osuna, 2021. "Different Mutations Providing Target Site Resistance to ALS- and ACCase-Inhibiting Herbicides in Echinochloa spp. from Rice Fields," Agriculture, MDPI, vol. 11(5), pages 1-12, April.
    20. David A Knowles & Gina Bouchard & Sylvia Plevritis, 2019. "Sparse discriminative latent characteristics for predicting cancer drug sensitivity from genomic features," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:65:y:2019:i:11:id:516-2019-pse. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.