IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v7y2008i1n9.html
   My bibliography  Save this article

Structure Learning in Nested Effects Models

Author

Listed:
  • Tresch Achim

    (Johannes Gutenberg University Mainz)

  • Markowetz Florian

    (Princeton University)

Abstract

Nested Effects Models (NEMs) are a class of graphical models introduced to analyze the results of gene perturbation screens. NEMs explore noisy subset relations between the high-dimensional outputs of phenotyping studies, e.g., the effects showing in gene expression profiles or as morphological features of the perturbed cell.In this paper we expand the statistical basis of NEMs in four directions. First, we derive a new formula for the likelihood function of a NEM, which generalizes previous results for binary data. Second, we prove model identifiability under mild assumptions. Third, we show that the new formulation of the likelihood allows efficiency in traversing model space. Fourth, we incorporate prior knowledge and an automated variable selection criterion to decrease the influence of noise in the data.

Suggested Citation

  • Tresch Achim & Markowetz Florian, 2008. "Structure Learning in Nested Effects Models," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-28, March.
  • Handle: RePEc:bpj:sagmbi:v:7:y:2008:i:1:n:9
    DOI: 10.2202/1544-6115.1332
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1544-6115.1332
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1544-6115.1332?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew Fire & SiQun Xu & Mary K. Montgomery & Steven A. Kostas & Samuel E. Driver & Craig C. Mello, 1998. "Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans," Nature, Nature, vol. 391(6669), pages 806-811, February.
    2. Smyth Gordon K, 2004. "Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-28, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Theresa Niederberger & Stefanie Etzold & Michael Lidschreiber & Kerstin C Maier & Dietmar E Martin & Holger Fröhlich & Patrick Cramer & Achim Tresch, 2012. "MC EMiNEM Maps the Interaction Landscape of the Mediator," PLOS Computational Biology, Public Library of Science, vol. 8(6), pages 1-10, June.
    2. Ali Shojaie & Alexandra Jauhiainen & Michael Kallitsis & George Michailidis, 2014. "Inferring Regulatory Networks by Combining Perturbation Screens and Steady State Gene Expression Profiles," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aaron C Ericsson & J Wade Davis & William Spollen & Nathan Bivens & Scott Givan & Catherine E Hagan & Mark McIntosh & Craig L Franklin, 2015. "Effects of Vendor and Genetic Background on the Composition of the Fecal Microbiota of Inbred Mice," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-19, February.
    2. Petersen, Alexander M. & Rotolo, Daniele & Leydesdorff, Loet, 2016. "A triple helix model of medical innovation: Supply, demand, and technological capabilities in terms of Medical Subject Headings," Research Policy, Elsevier, vol. 45(3), pages 666-681.
    3. Sébastien L Floor & Aline Hebrant & Jaime M Pita & Manuel Saiselet & Christophe Trésallet & Frederick Libert & Guy Andry & Jacques E Dumont & Wilma C van Staveren & Carine Maenhaut, 2014. "MiRNA Expression May Account for Chronic but Not for Acute Regulation of mRNA Expression in Human Thyroid Tumor Models," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-9, November.
    4. Bilgrau, Anders Ellern & Eriksen, Poul Svante & Rasmussen, Jakob Gulddahl & Johnsen, Hans Erik & Dybkaer, Karen & Boegsted, Martin, 2016. "GMCM: Unsupervised Clustering and Meta-Analysis Using Gaussian Mixture Copula Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i02).
    5. Hossain, Ahmed & Beyene, Joseph & Willan, Andrew R. & Hu, Pingzhao, 2009. "A flexible approximate likelihood ratio test for detecting differential expression in microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3685-3695, August.
    6. Mark G Sterken & L Basten Snoek & Kobus J Bosman & Jikke Daamen & Joost A G Riksen & Jaap Bakker & Gorben P Pijlman & Jan E Kammenga, 2014. "A Heritable Antiviral RNAi Response Limits Orsay Virus Infection in Caenorhabditis elegans N2," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-8, February.
    7. Xiaohong Li & Guy N Brock & Eric C Rouchka & Nigel G F Cooper & Dongfeng Wu & Timothy E O’Toole & Ryan S Gill & Abdallah M Eteleeb & Liz O’Brien & Shesh N Rai, 2017. "A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-22, May.
    8. Nicola J. Armstrong, 2008. "The changing focus of microarray analysis," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 62(3), pages 364-373, August.
    9. Kerr Kathleen F., 2012. "Optimality Criteria for the Design of 2-Color Microarray Studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(1), pages 1-9, January.
    10. Ambroise Jérôme & Bearzatto Bertrand & Robert Annie & Macq Benoit & Gala Jean-Luc, 2012. "Combining Multiple Laser Scans of Spotted Microarrays by Means of a Two-Way ANOVA Model," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-20, February.
    11. J. McClatchy & R. Strogantsev & E. Wolfe & H. Y. Lin & M. Mohammadhosseini & B. A. Davis & C. Eden & D. Goldman & W. H. Fleming & P. Conley & G. Wu & L. Cimmino & H. Mohammed & A. Agarwal, 2023. "Clonal hematopoiesis related TET2 loss-of-function impedes IL1β-mediated epigenetic reprogramming in hematopoietic stem and progenitor cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. Elizabeth A Osterndorff-Kahanek & Gayatri R Tiwari & Marcelo F Lopez & Howard C Becker & R Adron Harris & R Dayne Mayfield, 2018. "Long-term ethanol exposure: Temporal pattern of microRNA expression and associated mRNA gene networks in mouse brain," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-25, January.
    13. Alexandra Gyurdieva & Stefan Zajic & Ya-Fang Chang & E. Andres Houseman & Shan Zhong & Jaegil Kim & Michael Nathenson & Thomas Faitg & Mary Woessner & David C. Turner & Aisha N. Hasan & John Glod & Ro, 2022. "Biomarker correlates with response to NY-ESO-1 TCR T cells in patients with synovial sarcoma," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    14. Sora Yoon & Seon-Young Kim & Dougu Nam, 2016. "Improving Gene-Set Enrichment Analysis of RNA-Seq Data with Small Replicates," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-16, November.
    15. Gersbach, Hans & Sorger, Gerhard & Amon, Christian, 2018. "Hierarchical growth: Basic and applied research," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 434-459.
    16. Yu Lianbo & Gulati Parul & Fernandez Soledad & Pennell Michael & Kirschner Lawrence & Jarjoura David, 2011. "Fully Moderated T-statistic for Small Sample Size Gene Expression Arrays," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, September.
    17. Zahra Narimani & Hamid Beigy & Ashar Ahmad & Ali Masoudi-Nejad & Holger Fröhlich, 2017. "Expectation propagation for large scale Bayesian inference of non-linear molecular networks from perturbation data," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-16, February.
    18. Petra Massoner & Karl G Kugler & Karin Unterberger & Ruprecht Kuner & Laurin A J Mueller & Maria Fälth & Georg Schäfer & Christof Seifarth & Simone Ecker & Irmgard Verdorfer & Armin Graber & Holger Sü, 2013. "Characterization of Transcriptional Changes in ERG Rearrangement-Positive Prostate Cancer Identifies the Regulation of Metabolic Sensors Such as Neuropeptide Y," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-11, February.
    19. Chaofeng Yuan & Wensheng Zhu & Xuming He & Jianhua Guo, 2019. "A mixture factor model with applications to microarray data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 60-76, March.
    20. Debajyoti Ghosh & Lili Ding & Umasundari Sivaprasad & Esmond Geh & Jocelyn Biagini Myers & Jonathan A Bernstein & Gurjit K Khurana Hershey & Tesfaye B Mersha, 2015. "Multiple Transcriptome Data Analysis Reveals Biologically Relevant Atopic Dermatitis Signature Genes and Pathways," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-23, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:7:y:2008:i:1:n:9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.