IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v19y2020i1p27n1.html
   My bibliography  Save this article

Identification of supervised and sparse functional genomic pathways

Author

Listed:
  • Zhang Fan

    (Department of Biostatistics, SUNY University at Buffalo, Buffalo NY 14214, USA)

  • Miecznikowski Jeffrey C.
  • Tritchler David L.

    (Department of Biostatistics, SUNY University at Buffalo, Buffalo NY, USA)

Abstract

Functional pathways involve a series of biological alterations that may result in the occurrence of many diseases including cancer. With the availability of various “omics” technologies it becomes feasible to integrate information from a hierarchy of biological layers to provide a more comprehensive understanding to the disease. In many diseases, it is believed that only a small number of networks, each relatively small in size, drive the disease. Our goal in this study is to develop methods to discover these functional networks across biological layers correlated with the phenotype. We derive a novel Network Summary Matrix (NSM) that highlights potential pathways conforming to least squares regression relationships. An algorithm called Decomposition of Network Summary Matrix via Instability (DNSMI) involving decomposition of NSM using instability regularization is proposed. Simulations and real data analysis from The Cancer Genome Atlas (TCGA) program will be shown to demonstrate the performance of the algorithm.

Suggested Citation

  • Zhang Fan & Miecznikowski Jeffrey C. & Tritchler David L., 2020. "Identification of supervised and sparse functional genomic pathways," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 19(1), pages 1-27, February.
  • Handle: RePEc:bpj:sagmbi:v:19:y:2020:i:1:p:27:n:1
    DOI: 10.1515/sagmb-2018-0026
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/sagmb-2018-0026
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/sagmb-2018-0026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lê Cao Kim-Anh & Rossouw Debra & Robert-Granié Christèle & Besse Philippe, 2008. "A Sparse PLS for Variable Selection when Integrating Omics Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-32, November.
    2. Verena Zuber & Johanna Maria Colijn & Caroline Klaver & Stephen Burgess, 2020. "Selecting likely causal risk factors from high-throughput experiments using multivariable Mendelian randomization," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    3. Witten Daniela M & Tibshirani Robert J., 2009. "Extensions of Sparse Canonical Correlation Analysis with Applications to Genomic Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-27, June.
    4. Parkhomenko Elena & Tritchler David & Beyene Joseph, 2009. "Sparse Canonical Correlation Analysis with Application to Genomic Data Integration," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-34, January.
    5. Waaijenborg Sandra & Verselewel de Witt Hamer Philip C. & Zwinderman Aeilko H, 2008. "Quantifying the Association between Gene Expressions and DNA-Markers by Penalized Canonical Correlation Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-29, January.
    6. Carl Eckart & Gale Young, 1936. "The approximation of one matrix by another of lower rank," Psychometrika, Springer;The Psychometric Society, vol. 1(3), pages 211-218, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wenjia & Zhou, Yi-Hui, 2021. "Eigenvector-based sparse canonical correlation analysis: Fast computation for estimation of multiple canonical vectors," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    2. Dmitry Kobak & Yves Bernaerts & Marissa A. Weis & Federico Scala & Andreas S. Tolias & Philipp Berens, 2021. "Sparse reduced‐rank regression for exploratory visualisation of paired multivariate data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 980-1000, August.
    3. Chalise, Prabhakar & Fridley, Brooke L., 2012. "Comparison of penalty functions for sparse canonical correlation analysis," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 245-254.
    4. Melissa G Naylor & Xihong Lin & Scott T Weiss & Benjamin A Raby & Christoph Lange, 2010. "Using Canonical Correlation Analysis to Discover Genetic Regulatory Variants," PLOS ONE, Public Library of Science, vol. 5(5), pages 1-6, May.
    5. Jose A Seoane & Colin Campbell & Ian N M Day & Juan P Casas & Tom R Gaunt, 2014. "Canonical Correlation Analysis for Gene-Based Pleiotropy Discovery," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-13, October.
    6. Coleman Jacob & Replogle Joseph & Chandler Gabriel & Hardin Johanna, 2016. "Resistant multiple sparse canonical correlation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(2), pages 123-138, April.
    7. Ronglai Shen & Qianxing Mo & Nikolaus Schultz & Venkatraman E Seshan & Adam B Olshen & Jason Huse & Marc Ladanyi & Chris Sander, 2012. "Integrative Subtype Discovery in Glioblastoma Using iCluster," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-9, April.
    8. Feng, Qing & Jiang, Meilei & Hannig, Jan & Marron, J.S., 2018. "Angle-based joint and individual variation explained," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 241-265.
    9. Lykou, Anastasia & Whittaker, Joe, 2010. "Sparse CCA using a Lasso with positivity constraints," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3144-3157, December.
    10. Sewell, Daniel K., 2018. "Visualizing data through curvilinear representations of matrices," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 255-270.
    11. Kohei Adachi & Nickolay T. Trendafilov, 2016. "Sparse principal component analysis subject to prespecified cardinality of loadings," Computational Statistics, Springer, vol. 31(4), pages 1403-1427, December.
    12. Norman Cliff, 1962. "Analytic rotation to a functional relationship," Psychometrika, Springer;The Psychometric Society, vol. 27(3), pages 283-295, September.
    13. Jushan Bai & Serena Ng, 2020. "Simpler Proofs for Approximate Factor Models of Large Dimensions," Papers 2008.00254, arXiv.org.
    14. Alfredo García-Hiernaux & José Casals & Miguel Jerez, 2012. "Estimating the system order by subspace methods," Computational Statistics, Springer, vol. 27(3), pages 411-425, September.
    15. Szefer Elena & Graham Jinko & Lu Donghuan & Beg Mirza Faisal & Nathoo Farouk, 2017. "Multivariate association between single-nucleotide polymorphisms in Alzgene linkage regions and structural changes in the brain: discovery, refinement and validation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(5-6), pages 349-365, December.
    16. Mitzi Cubilla‐Montilla & Ana‐Belén Nieto‐Librero & Ma Purificación Galindo‐Villardón & Ma Purificación Vicente Galindo & Isabel‐María Garcia‐Sanchez, 2019. "Are cultural values sufficient to improve stakeholder engagement human and labour rights issues?," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 26(4), pages 938-955, July.
    17. Stegeman, Alwin, 2016. "A new method for simultaneous estimation of the factor model parameters, factor scores, and unique parts," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 189-203.
    18. Daniele, Bertolozzi-Caredio & Barbara, Soriano & Isabel, Bardaji & Alberto, Garrido, 2022. "Analysis of perceived robustness, adaptability and transformability of Spanish extensive livestock farms under alternative challenging scenarios," Agricultural Systems, Elsevier, vol. 202(C).
    19. Alberto Roverato & F. Marta L. Di Lascio, 2011. "Wilks' Λ Dissimilarity Measures for Gene Clustering: An Approach Based on the Identification of Transcription Modules," Biometrics, The International Biometric Society, vol. 67(4), pages 1236-1248, December.
    20. Jos Berge & Henk Kiers, 1993. "An alternating least squares method for the weighted approximation of a symmetric matrix," Psychometrika, Springer;The Psychometric Society, vol. 58(1), pages 115-118, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:19:y:2020:i:1:p:27:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.