IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v11y2012i5n5.html
   My bibliography  Save this article

Genotype Copy Number Variations using Gaussian Mixture Models: Theory and Algorithms

Author

Listed:
  • Lin Chang-Yun

    (Department of Applied Mathematics and Institute of Statistics, National Chung Hsing University, Taiwan)

  • Lo Yungtai

    (Albert Einstein College of Medicine)

  • Ye Kenny Q.

    (Albert Einstein College of Medicine)

Abstract

Copy number variations (CNVs) are important in the disease association studies and are usually targeted by most recent microarray platforms developed for GWAS studies. However, the probes targeting the same CNV regions could vary greatly in performance, with some of the probes carrying little information more than pure noise. In this paper, we investigate how to best combine measurements of multiple probes to estimate copy numbers of individuals under the framework of Gaussian mixture model (GMM). First we show that under two regularity conditions and assume all the parameters except the mixing proportions are known, optimal weights can be obtained so that the univariate GMM based on the weighted average gives the exactly the same classification as the multivariate GMM does. We then developed an algorithm that iteratively estimates the parameters and obtains the optimal weights, and uses them for classification. The algorithm performs well on simulation data and two sets of real data, which shows clear advantage over classification based on the equal weighted average.

Suggested Citation

  • Lin Chang-Yun & Lo Yungtai & Ye Kenny Q., 2012. "Genotype Copy Number Variations using Gaussian Mixture Models: Theory and Algorithms," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(5), pages 1-26, October.
  • Handle: RePEc:bpj:sagmbi:v:11:y:2012:i:5:n:5
    DOI: 10.1515/1544-6115.1725
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/1544-6115.1725
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/1544-6115.1725?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fridlyand, Jane & Snijders, Antoine M. & Pinkel, Dan & Albertson, Donna G. & Jain, A.N.Ajay N., 2004. "Hidden Markov models approach to the analysis of array CGH data," Journal of Multivariate Analysis, Elsevier, vol. 90(1), pages 132-153, July.
    2. Donald F. Conrad & Dalila Pinto & Richard Redon & Lars Feuk & Omer Gokcumen & Yujun Zhang & Jan Aerts & T. Daniel Andrews & Chris Barnes & Peter Campbell & Tomas Fitzgerald & Min Hu & Chun Hwa Ihm & K, 2010. "Origins and functional impact of copy number variation in the human genome," Nature, Nature, vol. 464(7289), pages 704-712, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Love Michael I. & Myšičková Alena & Sun Ruping & Kalscheuer Vera & Vingron Martin & Haas Stefan A., 2011. "Modeling Read Counts for CNV Detection in Exome Sequencing Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-30, November.
    2. Salvatore Fasola & Vito M. R. Muggeo & Helmut Küchenhoff, 2018. "A heuristic, iterative algorithm for change-point detection in abrupt change models," Computational Statistics, Springer, vol. 33(2), pages 997-1015, June.
    3. Huixia Judy Wang & Jianhua Hu, 2011. "Identification of Differential Aberrations in Multiple-Sample Array CGH Studies," Biometrics, The International Biometric Society, vol. 67(2), pages 353-362, June.
    4. Vincent Guigues, 2012. "Nonparametric multivariate breakpoint detection for the means, variances, and covariances of a discrete time stochastic process," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 857-882, December.
    5. Rameen Beroukhim & Ming Lin & Yuhyun Park & Ke Hao & Xiaojun Zhao & Levi A Garraway & Edward A Fox & Ephraim P Hochberg & Ingo K Mellinghoff & Matthias D Hofer & Aurelien Descazeaud & Mark A Rubin & M, 2006. "Inferring Loss-of-Heterozygosity from Unpaired Tumors Using High-Density Oligonucleotide SNP Arrays," PLOS Computational Biology, Public Library of Science, vol. 2(5), pages 1-10, May.
    6. Lucia Ruojia Wu & Peng Dai & Michael Xiangjiang Wang & Sherry Xi Chen & Evan N. Cohen & Gitanjali Jayachandran & Jinny Xuemeng Zhang & Angela V. Serrano & Nina Guanyi Xie & Naoto T. Ueno & James M. Re, 2022. "Ensemble of nucleic acid absolute quantitation modules for copy number variation detection and RNA profiling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. A. Gandolfi & M. Benelli & A. Magi & S. Chiti, 2013. "Moment estimation in discrete shifting level model applied to fast array-CGH segmentation," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(3), pages 227-262, August.
    8. Yoo-Ah Kim & Stefan Wuchty & Teresa M Przytycka, 2011. "Identifying Causal Genes and Dysregulated Pathways in Complex Diseases," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-13, March.
    9. Oscar M Rueda & Ramón Díaz-Uriarte, 2007. "Flexible and Accurate Detection of Genomic Copy-Number Changes from aCGH," PLOS Computational Biology, Public Library of Science, vol. 3(6), pages 1-8, June.
    10. Jingfen Lan & Ziheng Liao & A. K. Alvi Haque & Qiang Yu & Kun Xie & Yang Guo, 2024. "CNVbd: A Method for Copy Number Variation Detection and Boundary Search," Mathematics, MDPI, vol. 12(3), pages 1-15, January.
    11. Leighton Pritchard & Hui Liu & Clare Booth & Emma Douglas & Patrice François & Jacques Schrenzel & Peter E Hedley & Paul R J Birch & Ian K Toth, 2009. "Microarray Comparative Genomic Hybridisation Analysis Incorporating Genomic Organisation, and Application to Enterobacterial Plant Pathogens," PLOS Computational Biology, Public Library of Science, vol. 5(8), pages 1-17, August.
    12. Yu Chuan Tai & Mark N. Kvale & John S. Witte, 2010. "Segmentation and Estimation for SNP Microarrays: A Bayesian Multiple Change-Point Approach," Biometrics, The International Biometric Society, vol. 66(3), pages 675-683, September.
    13. Bérard Caroline & Martin-Magniette Marie-Laure & Brunaud Véronique & Aubourg Sébastien & Robin Stéphane, 2011. "Unsupervised Classification for Tiling Arrays: ChIP-chip and Transcriptome," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, November.
    14. Nancy R. Zhang & David O. Siegmund, 2007. "A Modified Bayes Information Criterion with Applications to the Analysis of Comparative Genomic Hybridization Data," Biometrics, The International Biometric Society, vol. 63(1), pages 22-32, March.
    15. Michael Seifert & André Gohr & Marc Strickert & Ivo Grosse, 2012. "Parsimonious Higher-Order Hidden Markov Models for Improved Array-CGH Analysis with Applications to Arabidopsis thaliana," PLOS Computational Biology, Public Library of Science, vol. 8(1), pages 1-15, January.
    16. Zhuoran Xu & Quan Li & Luigi Marchionni & Kai Wang, 2023. "PhenoSV: interpretable phenotype-aware model for the prioritization of genes affected by structural variants," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    17. Engler David & Shen Yiping & Gusella James & Betensky Rebecca A., 2011. "Comparison of Clinical Subgroup aCGH Profiles through Pseudolikelihood Ratio Tests," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-23, July.
    18. John Wiedenhoeft & Eric Brugel & Alexander Schliep, 2016. "Fast Bayesian Inference of Copy Number Variants using Hidden Markov Models with Wavelet Compression," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-28, May.
    19. Castro, Bruno M. & Lemes, Renan B. & Cesar, Jonatas & Hünemeier, Tábita & Leonardi, Florencia, 2018. "A model selection approach for multiple sequence segmentation and dimensionality reduction," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 319-330.
    20. Xuesong Yu & Timothy W. Randolph & Hua Tang & Li Hsu, 2010. "Detecting Genomic Aberrations Using Products in a Multiscale Analysis," Biometrics, The International Biometric Society, vol. 66(3), pages 684-693, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:11:y:2012:i:5:n:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.