IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v11y2012i2n8.html
   My bibliography  Save this article

Querying Genomic Databases: Refining the Connectivity Map

Author

Listed:
  • Segal Mark R.

    (University of California, San Francisco)

  • Xiong Hao

    (University of California, San Francisco)

  • Bengtsson Henrik

    (University of California, San Francisco)

  • Bourgon Richard

    (Genentech, Inc.)

  • Gentleman Robert

    (Genentech Inc.)

Abstract

The advent of high-throughput biotechnologies, which can efficiently measure gene expression on a global basis, has led to the creation and population of correspondingly rich databases and compendia. Such repositories have the potential to add enormous scientific value beyond that provided by individual studies which, due largely to cost considerations, are typified by small sample sizes. Accordingly, substantial effort has been invested in devising analysis schemes for utilizing gene-expression repositories. Here, we focus on one such scheme, the Connectivity Map (cmap), that was developed with the express purpose of identifying drugs with putative efficacy against a given disease, where the disease in question is characterized by a (differential) gene-expression signature. Initial claims surrounding cmap intimated that such tools might lead to new, previously unanticipated applications of existing drugs. However, further application suggests that its primary utility is in connecting a disease condition whose biology is largely unknown to a drug whose mechanisms of action are well understood, making cmap a tool for enhancing biological knowledge.The success of the Connectivity Map is belied by its simplicity. The aforementioned signature serves as an unordered query which is applied to a customized database of (differential) gene-expression experiments designed to elicit response to a wide range of drugs, across of spectrum of concentrations, durations, and cell lines. Such application is effected by computing a per experiment score that measures "closeness" between the signature and the experiment. Top-scoring experiments, and the attendant drug(s), are then deemed relevant to the disease underlying the query. Inference supporting such elicitations is pursued via re-sampling. In this paper, we revisit two key aspects of the Connectivity Map implementation. Firstly, we develop new approaches to measuring closeness for the common scenario wherein the query constitutes an ordered list. These involve using metrics proposed for analyzing partially ranked data, these being of interest in their own right and not widely used. Secondly, we advance an alternate inferential approach based on generating empirical null distributions that exploit the scope, and capture dependencies, embodied by the database. Using these refinements we undertake a comprehensive re-evaluation of Connectivity Map findings that, in general terms, reveal that accommodating ordered queries is less critical than the mode of inference.

Suggested Citation

  • Segal Mark R. & Xiong Hao & Bengtsson Henrik & Bourgon Richard & Gentleman Robert, 2012. "Querying Genomic Databases: Refining the Connectivity Map," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(2), pages 1-37, January.
  • Handle: RePEc:bpj:sagmbi:v:11:y:2012:i:2:n:8
    DOI: 10.2202/1544-6115.1715
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1544-6115.1715
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1544-6115.1715?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Turner, Heather & Bailey, Trevor & Krzanowski, Wojtek, 2005. "Improved biclustering of microarray data demonstrated through systematic performance tests," Computational Statistics & Data Analysis, Elsevier, vol. 48(2), pages 235-254, February.
    2. George C. Tseng & Wing H. Wong, 2005. "Tight Clustering: A Resampling-Based Approach for Identifying Stable and Tight Patterns in Data," Biometrics, The International Biometric Society, vol. 61(1), pages 10-16, March.
    3. Efron, Bradley, 2004. "Large-Scale Simultaneous Hypothesis Testing: The Choice of a Null Hypothesis," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 96-104, January.
    4. John D. Storey & Jonathan E. Taylor & David Siegmund, 2004. "Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 187-205, February.
    5. Leek Jeffrey T & Storey John D., 2011. "The Joint Null Criterion for Multiple Hypothesis Tests," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shigeyuki Matsui & Hisashi Noma, 2011. "Estimating Effect Sizes of Differentially Expressed Genes for Power and Sample-Size Assessments in Microarray Experiments," Biometrics, The International Biometric Society, vol. 67(4), pages 1225-1235, December.
    2. He, Yi & Pan, Wei & Lin, Jizhen, 2006. "Cluster analysis using multivariate normal mixture models to detect differential gene expression with microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 641-658, November.
    3. Wang Chamont & Gevertz Jana L., 2016. "Finding causative genes from high-dimensional data: an appraisal of statistical and machine learning approaches," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(4), pages 321-347, August.
    4. Gordon, Alexander & Chen, Linlin & Glazko, Galina & Yakovlev, Andrei, 2009. "Balancing type one and two errors in multiple testing for differential expression of genes," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1622-1629, March.
    5. T. Tony Cai & Wenguang Sun, 2017. "Optimal screening and discovery of sparse signals with applications to multistage high throughput studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 197-223, January.
    6. Leek Jeffrey T & Storey John D., 2011. "The Joint Null Criterion for Multiple Hypothesis Tests," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, June.
    7. Davide Risso & Liam Purvis & Russell B Fletcher & Diya Das & John Ngai & Sandrine Dudoit & Elizabeth Purdom, 2018. "clusterExperiment and RSEC: A Bioconductor package and framework for clustering of single-cell and other large gene expression datasets," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-16, September.
    8. Xinge Jessie Jeng & Zhongyin John Daye & Wenbin Lu & Jung-Ying Tzeng, 2016. "Rare Variants Association Analysis in Large-Scale Sequencing Studies at the Single Locus Level," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-23, June.
    9. C. M. Kendziorski & M. Chen & M. Yuan & H. Lan & A. D. Attie, 2006. "Statistical Methods for Expression Quantitative Trait Loci (eQTL) Mapping," Biometrics, The International Biometric Society, vol. 62(1), pages 19-27, March.
    10. Sairam Rayaprolu & Zhiyi Chi, 2021. "False Discovery Variance Reduction in Large Scale Simultaneous Hypothesis Tests," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 711-733, September.
    11. Hongkai Ji & Wing Hung Wong, 2006. "Computational Biology: Toward Deciphering Gene Regulatory Information in Mammalian Genomes," Biometrics, The International Biometric Society, vol. 62(3), pages 645-663, September.
    12. Zhao, Haibing & Fung, Wing Kam, 2016. "A powerful FDR control procedure for multiple hypotheses," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 60-70.
    13. T. Tony Cai & Weidong Liu, 2016. "Large-Scale Multiple Testing of Correlations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 229-240, March.
    14. Robin, Stephane & Bar-Hen, Avner & Daudin, Jean-Jacques & Pierre, Laurent, 2007. "A semi-parametric approach for mixture models: Application to local false discovery rate estimation," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5483-5493, August.
    15. Habiger, Joshua D. & Peña, Edsel A., 2014. "Compound p-value statistics for multiple testing procedures," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 153-166.
    16. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
    17. Pounds Stanley B. & Gao Cuilan L. & Zhang Hui, 2012. "Empirical Bayesian Selection of Hypothesis Testing Procedures for Analysis of Sequence Count Expression Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(5), pages 1-32, October.
    18. Xu Gao & Weining Shen & Liwen Zhang & Jianhua Hu & Norbert J. Fortin & Ron D. Frostig & Hernando Ombao, 2021. "Regularized matrix data clustering and its application to image analysis," Biometrics, The International Biometric Society, vol. 77(3), pages 890-902, September.
    19. Jianqing Fan & Xu Han, 2017. "Estimation of the false discovery proportion with unknown dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1143-1164, September.
    20. Lianming Wang & David B. Dunson, 2010. "Semiparametric Bayes Multiple Testing: Applications to Tumor Data," Biometrics, The International Biometric Society, vol. 66(2), pages 493-501, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:11:y:2012:i:2:n:8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.