IDEAS home Printed from https://ideas.repec.org/a/bpj/jqsprt/v16y2020i2p95-120n4.html
   My bibliography  Save this article

Extracting NFL tracking data from images to evaluate quarterbacks and pass defenses

Author

Listed:
  • Mallepalle Sarah
  • Yurko Ronald
  • Ventura Samuel L.

    (Department of Statistics & Data Science, Carnegie Mellon University, Pittsburgh, PA, USA)

  • Pelechrinis Konstantinos

    (School of Computing and Information, University of Pittsburgh, Pittsburgh, PA, USA)

Abstract

The NFL collects detailed tracking data capturing the location of all players and the ball during each play. Although the raw form of this data is not publicly available, the NFL releases a set of aggregated statistics via their Next Gen Stats (NGS) platform. They also provide charts showing the locations of pass attempts and outcomes for individual quarterbacks. Our work aims to partially close the gap between what data is available privately (to NFL teams) and publicly, and our contribution is two-fold. First, we introduce an image processing tool designed specifically for extracting the raw data from the NGS pass charts. We extract the pass outcome, coordinates, and other metadata. Second, we analyze the resulting dataset, examining the spatial tendencies and performances of individual quarterbacks and defenses. We use a generalized additive model for completion percentages by field location. We introduce a naive Bayes approach for estimating the 2-D completion percentage surfaces of individual teams and quarterbacks, and we provide a one-number summary, completion percentage above expectation (CPAE), for evaluating quarterbacks and team defenses. We find that our pass location data closely matches the NFL’s tracking data, and that our CPAE metric closely matches the NFL’s proprietary CPAE metric.

Suggested Citation

  • Mallepalle Sarah & Yurko Ronald & Ventura Samuel L. & Pelechrinis Konstantinos, 2020. "Extracting NFL tracking data from images to evaluate quarterbacks and pass defenses," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 16(2), pages 95-120, June.
  • Handle: RePEc:bpj:jqsprt:v:16:y:2020:i:2:p:95-120:n:4
    DOI: 10.1515/jqas-2019-0052
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jqas-2019-0052
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/jqas-2019-0052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel Cervone & Alex D’Amour & Luke Bornn & Kirk Goldsberry, 2016. "A Multiresolution Stochastic Process Model for Predicting Basketball Possession Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 585-599, April.
    2. Yurko Ronald & Ventura Samuel & Horowitz Maksim, 2019. "nflWAR: a reproducible method for offensive player evaluation in football," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 15(3), pages 163-183, September.
    3. Baumer Benjamin S. & Jensen Shane T. & Matthews Gregory J., 2015. "openWAR: An open source system for evaluating overall player performance in major league baseball," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 11(2), pages 69-84, June.
    4. Yurko Ronald & Ventura Samuel & Horowitz Maksim, 2019. "nflWAR: a reproducible method for offensive player evaluation in football," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 15(3), pages 163-183, September.
    5. Franks Alexander M. & D’Amour Alexander & Cervone Daniel & Bornn Luke, 2016. "Meta-analytics: tools for understanding the statistical properties of sports metrics," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 12(4), pages 151-165, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sabin R. Paul, 2021. "Estimating player value in American football using plus–minus models," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 17(4), pages 313-364, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yurko Ronald & Ventura Samuel & Horowitz Maksim, 2019. "nflWAR: a reproducible method for offensive player evaluation in football," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 15(3), pages 163-183, September.
    2. Ventura Samuel L., 2020. "What will we unlearn next? The implications of Lopez (2020)," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 16(2), pages 81-83, June.
    3. Sabin R. Paul, 2021. "Estimating player value in American football using plus–minus models," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 17(4), pages 313-364, December.
    4. Yurko Ronald & Matano Francesca & Richardson Lee F. & Pospisil Taylor & Ventura Samuel L. & Granered Nicholas & Pelechrinis Konstantinos, 2020. "Going deep: models for continuous-time within-play valuation of game outcomes in American football with tracking data," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 16(2), pages 163-182, June.
    5. Chu Dani & Reyers Matthew & Thomson James & Wu Lucas Yifan, 2020. "Route identification in the National Football League: An application of model-based curve clustering using the EM algorithm," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 16(2), pages 121-132, June.
    6. Franks Alexander M. & D’Amour Alexander & Cervone Daniel & Bornn Luke, 2016. "Meta-analytics: tools for understanding the statistical properties of sports metrics," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 12(4), pages 151-165, December.
    7. Steven Wu & Luke Bornn, 2018. "Modeling Offensive Player Movement in Professional Basketball," The American Statistician, Taylor & Francis Journals, vol. 72(1), pages 72-79, January.
    8. Pierpalo D’Urso & Livia Giovanni & Vincenzina Vitale, 2023. "A Bayesian network to analyse basketball players’ performances: a multivariate copula-based approach," Annals of Operations Research, Springer, vol. 325(1), pages 419-440, June.
    9. Paola Zuccolotto & Marco Sandri & Marica Manisera, 2021. "Spatial Performance Indicators and Graphs in Basketball," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 725-738, August.
    10. Deshpande Sameer K. & Evans Katherine, 2020. "Expected hypothetical completion probability," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 16(2), pages 85-94, June.
    11. Paola Zuccolotto & Marco Sandri & Marica Manisera, 2023. "Spatial performance analysis in basketball with CART, random forest and extremely randomized trees," Annals of Operations Research, Springer, vol. 325(1), pages 495-519, June.
    12. Santos-Fernandez Edgar & Wu Paul & Mengersen Kerrie L., 2019. "Bayesian statistics meets sports: a comprehensive review," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 15(4), pages 289-312, December.
    13. Jyh-How Huang & Yu-Chia Hsu, 2021. "A Multidisciplinary Perspective on Publicly Available Sports Data in the Era of Big Data: A Scoping Review of the Literature on Major League Baseball," SAGE Open, , vol. 11(4), pages 21582440211, November.
    14. Kęstutis Matulaitis & Tomas Bietkis, 2021. "Prediction of Offensive Possession Ends in Elite Basketball Teams," IJERPH, MDPI, vol. 18(3), pages 1-11, January.
    15. S. E. Hill, 2022. "In-game win probability models for Canadian football," Journal of Business Analytics, Taylor & Francis Journals, vol. 5(2), pages 164-178, July.
    16. Yurko Ronald & Ventura Samuel & Horowitz Maksim, 2019. "nflWAR: a reproducible method for offensive player evaluation in football," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 15(3), pages 163-183, September.
    17. Marco Sandri & Paola Zuccolotto & Marica Manisera, 2020. "Markov switching modelling of shooting performance variability and teammate interactions in basketball," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1337-1356, November.
    18. Timothy C. Y. Chan & Craig Fernandes & Martin L. Puterman, 2021. "Points Gained in Football: Using Markov Process-Based Value Functions to Assess Team Performance," Operations Research, INFORMS, vol. 69(3), pages 877-894, May.
    19. Luca De Angelis & J. James Reade, 2023. "Home advantage and mispricing in indoor sports’ ghost games: the case of European basketball," Annals of Operations Research, Springer, vol. 325(1), pages 391-418, June.
    20. Galeano, Javier & Gómez, Miguel-Ángel & Rivas, Fernando & Buldú, Javier M., 2022. "Using Markov chains to identify player’s performance in badminton," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:16:y:2020:i:2:p:95-120:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.