IDEAS home Printed from https://ideas.repec.org/a/bpj/jqsprt/v15y2019i4p313-325n3.html
   My bibliography  Save this article

A point-based Bayesian hierarchical model to predict the outcome of tennis matches

Author

Listed:
  • Ingram Martin

    (University of Melbourne, School of BioSciences, Melbourne, Australia)

Abstract

A well-established assumption in tennis is that point outcomes on each player’s serve in a match are independent and identically distributed (iid). With this assumption, it is enough to specify the serve probabilities for both players to derive a wide variety of event distributions, such as the expected winner and number of sets, and number of games. However, models using this assumption, which we will refer to as “point-based”, have typically performed worse than other models in the literature at predicting the match winner. This paper presents a point-based Bayesian hierarchical model for predicting the outcome of tennis matches. The model predicts the probability of winning a point on serve given surface, tournament and match date. Each player is given a serve and return skill which is assumed to follow a Gaussian random walk over time. In addition, each player’s skill varies by surface, and tournaments are given tournament-specific intercepts. When evaluated on the ATP’s 2014 season, the model outperforms other point-based models, predicting match outcomes with greater accuracy (68.8% vs. 66.3%) and lower log loss (0.592 vs. 0.641). The results are competitive with approaches modelling the match outcome directly, demonstrating the forecasting potential of the point-based modelling approach.

Suggested Citation

  • Ingram Martin, 2019. "A point-based Bayesian hierarchical model to predict the outcome of tennis matches," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 15(4), pages 313-325, December.
  • Handle: RePEc:bpj:jqsprt:v:15:y:2019:i:4:p:313-325:n:3
    DOI: 10.1515/jqas-2018-0008
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jqas-2018-0008
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/jqas-2018-0008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:15:y:2019:i:4:p:313-325:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.