IDEAS home Printed from https://ideas.repec.org/a/bpj/causin/v8y2020i1p70-91n14.html
   My bibliography  Save this article

The Inflation Technique Completely Solves the Causal Compatibility Problem

Author

Listed:
  • Navascués Miguel

    (Institute for Quantum Optics and Quantum Information (IQOQI) Vienna, Austrian Academy of Sciences, Boltzmanngasse 3, 1090, Vienna, Austria)

  • Wolfe Elie

    (Perimeter Institute for Theoretical Physics, 31 Caroline St. N, Waterloo, Ontario, Canada, N2L 2Y5)

Abstract

The causal compatibility question asks whether a given causal structure graph — possibly involving latent variables — constitutes a genuinely plausible causal explanation for a given probability distribution over the graph’s observed categorical variables. Algorithms predicated on merely necessary constraints for causal compatibility typically suffer from false negatives, i.e. they admit incompatible distributions as apparently compatible with the given graph. In 10.1515/jci-2017-0020, one of us introduced the inflation technique for formulating useful relaxations of the causal compatibility problem in terms of linear programming. In this work, we develop a formal hierarchy of such causal compatibility relaxations. We prove that inflation is asymptotically tight, i.e., that the hierarchy converges to a zero-error test for causal compatibility. In this sense, the inflation technique fulfills a longstanding desideratum in the field of causal inference. We quantify the rate of convergence by showing that any distribution which passes the nth-order inflation test must be On−1/2$\begin{array}{} \displaystyle {O}{\left(n^{{{-}{1}}/{2}}\right)} \end{array}$-close in Euclidean norm to some distribution genuinely compatible with the given causal structure. Furthermore, we show that for many causal structures, the (unrelaxed) causal compatibility problem is faithfully formulated already by either the first or second order inflation test.

Suggested Citation

  • Navascués Miguel & Wolfe Elie, 2020. "The Inflation Technique Completely Solves the Causal Compatibility Problem," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 70-91, January.
  • Handle: RePEc:bpj:causin:v:8:y:2020:i:1:p:70-91:n:14
    DOI: 10.1515/jci-2018-0008
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jci-2018-0008
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jci-2018-0008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robin J. Evans & Thomas S. Richardson, 2013. "Marginal log-linear parameters for graphical Markov models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 743-768, September.
    2. Robin J. Evans, 2016. "Graphs for Margins of Bayesian Networks," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 625-648, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lorenza Rossi & Emilio Zanetti Chini, 2016. "Firms’ Dynamics and Business Cycle: New Disaggregated Data," DEM Working Papers Series 123, University of Pavia, Department of Economics and Management.
    2. Boitani, Andrea & Punzo, Chiara, 2019. "Banks’ leverage behaviour in a two-agent new Keynesian model," Journal of Economic Behavior & Organization, Elsevier, vol. 162(C), pages 347-359.
    3. Ioannis Ntzoufras & Claudia Tarantola & Monia Lupparelli, 2018. "Probability Based Independence Sampler for Bayesian Quantitative Learning in Graphical Log-Linear Marginal Models," DEM Working Papers Series 149, University of Pavia, Department of Economics and Management.
    4. Colombi, Roberto, 2020. "Selection tests for possibly misspecified hierarchical multinomial marginal models," Econometrics and Statistics, Elsevier, vol. 16(C), pages 136-147.
    5. Alberto Roverato, 2015. "Log-mean Linear Parameterization for Discrete Graphical Models of Marginal Independence and the Analysis of Dichotomizations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 627-648, June.
    6. Battey, H.S. & Cox, D.R., 2022. "Some aspects of non-standard multivariate analysis," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    7. Fraser Thomas C., 2020. "A Combinatorial Solution to Causal Compatibility," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 22-53, January.
    8. Evans, R.J. & Forcina, A., 2013. "Two algorithms for fitting constrained marginal models," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 1-7.
    9. Fraser Thomas C., 2020. "A Combinatorial Solution to Causal Compatibility," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 22-53, January.
    10. Ntzoufras, Ioannis & Tarantola, Claudia, 2013. "Conjugate and conditional conjugate Bayesian analysis of discrete graphical models of marginal independence," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 161-177.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:causin:v:8:y:2020:i:1:p:70-91:n:14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.