IDEAS home Printed from https://ideas.repec.org/a/bla/wireae/v12y2023i3ne470.html
   My bibliography  Save this article

Indirect weather‐based approaches for increasing power transfer capabilities of electrical transmission networks

Author

Listed:
  • Behzad Keyvani
  • Eoin Whelan
  • Eadaoin Doddy
  • Damian Flynn

Abstract

Dynamic line rating (DLR) systems are recognized as a cost‐effective and socially accepted asset for relieving network congestion and uprating existing transmission systems, based upon accessing additional weather‐dependent capacity of overhead lines. Although direct and indirect DLR methods are available, utilization of indirect weather‐based approaches, that is, sensors are not installed on the conductor, are of increasing interest due to fast installation times, that is, no requirement for line outages and lower capital costs, with achievable potential for wide‐area implementation. An extensive review is presented on the components and requirements of such systems, including weather stations, forecasting models, downscaling and DLR calculations, overhead line and conductor thermal models, and communication platforms. In addition, the features of practical instances of these systems are briefly reviewed. Moreover, a systematic approach is introduced for statistical evaluation of the high‐level DLR potential across an entire region, as well as an assessment of the line‐level DLR ampacities within an electrical grid, based on (weather forecasting) reanalysis data. The proposed methodology can disclose available additional capacity as part of early‐stage planning for wide‐area DLR systems. The island of Ireland and the 110 kV network of the Republic of Ireland (ROI) power system are considered as the study cases, with comparison made against seasonal static ratings and ambient temperature adjusted line rating methods. This article is categorized under: Energy and Power Systems > Energy Infrastructure Climate and Environment > Net Zero Planning and Decarbonization

Suggested Citation

  • Behzad Keyvani & Eoin Whelan & Eadaoin Doddy & Damian Flynn, 2023. "Indirect weather‐based approaches for increasing power transfer capabilities of electrical transmission networks," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(3), May.
  • Handle: RePEc:bla:wireae:v:12:y:2023:i:3:n:e470
    DOI: 10.1002/wene.470
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wene.470
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wene.470?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. F. Gülşen Erdinç & Ozan Erdinç & Recep Yumurtacı & João P. S. Catalão, 2020. "A Comprehensive Overview of Dynamic Line Rating Combined with Other Flexibility Options from an Operational Point of View," Energies, MDPI, vol. 13(24), pages 1-30, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Levente Rácz & Bálint Németh & Gábor Göcsei & Dimitar Zarchev & Valeri Mladenov, 2022. "Performance Analysis of a Dynamic Line Rating System Based on Project Experiences," Energies, MDPI, vol. 15(3), pages 1-11, January.
    2. Ramitha Dissanayake & Akila Wijethunge & Janaka Wijayakulasooriya & Janaka Ekanayake, 2022. "Optimizing PV-Hosting Capacity with the Integrated Employment of Dynamic Line Rating and Voltage Regulation," Energies, MDPI, vol. 15(22), pages 1-19, November.
    3. Glaum, Philipp & Hofmann, Fabian, 2023. "Leveraging the existing German transmission grid with dynamic line rating," Applied Energy, Elsevier, vol. 343(C).
    4. Raquel Martinez & Mario Manana & Alberto Arroyo & Sergio Bustamante & Alberto Laso & Pablo Castro & Rafael Minguez, 2021. "Dynamic Rating Management of Overhead Transmission Lines Operating under Multiple Weather Conditions," Energies, MDPI, vol. 14(4), pages 1-21, February.
    5. Jeff Laninga & Ali Nasr Esfahani & Gevindu Ediriweera & Nathan Jacob & Behzad Kordi, 2023. "Monitoring Technologies for HVDC Transmission Lines," Energies, MDPI, vol. 16(13), pages 1-32, June.
    6. Paolo Sospiro & Lohith Amarnath & Vincenzo Di Nardo & Giacomo Talluri & Foad H. Gandoman, 2021. "Smart Grid in China, EU, and the US: State of Implementation," Energies, MDPI, vol. 14(18), pages 1-16, September.
    7. Teresa Nogueira & José Magano & Ezequiel Sousa & Gustavo R. Alves, 2021. "The Impacts of Battery Electric Vehicles on the Power Grid: A Monte Carlo Method Approach," Energies, MDPI, vol. 14(23), pages 1-18, December.
    8. Yasir Yaqoob & Arjuna Marzuki & Ching-Ming Lai & Jiashen Teh, 2022. "Fuzzy Dynamic Thermal Rating System-Based Thermal Aging Model for Transmission Lines," Energies, MDPI, vol. 15(12), pages 1-23, June.
    9. Diana Enescu & Pietro Colella & Angela Russo & Radu Florin Porumb & George Calin Seritan, 2021. "Concepts and Methods to Assess the Dynamic Thermal Rating of Underground Power Cables," Energies, MDPI, vol. 14(9), pages 1-23, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:wireae:v:12:y:2023:i:3:n:e470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2041-8396 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.