IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v69y2015i1p49-66.html
   My bibliography  Save this article

Second-order analysis of anisotropic spatiotemporal point process data

Author

Listed:
  • C. Comas
  • F. J. Rodriguez-Cortes
  • J. Mateu

Abstract

type="main" xml:id="stan12046-abs-0001"> Second-order orientation methods provide a natural tool for the analysis of spatial point process data. In this paper, we extend to the spatiotemporal setting the spatial point pair orientation distribution function. The new space–time orientation distribution function is used to detect space–time anisotropic configurations. An edge-corrected estimator is defined and illustrated through a simulation study. We apply the resulting estimator to data on the spatiotemporal distribution of fire ignition events caused by humans in a square area of 30 × 30 km-super-2 for 4 years. Our results confirm that our approach is able to detect directional components at distinct spatiotemporal scales. © 2014 The Authors. Statistica Neerlandica © 2014 VVS.

Suggested Citation

  • C. Comas & F. J. Rodriguez-Cortes & J. Mateu, 2015. "Second-order analysis of anisotropic spatiotemporal point process data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(1), pages 49-66, February.
  • Handle: RePEc:bla:stanee:v:69:y:2015:i:1:p:49-66
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/stan.12046
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yongtao Guan & Michael Sherman & James A. Calvin, 2006. "Assessing Isotropy for Spatial Point Processes," Biometrics, The International Biometric Society, vol. 62(1), pages 119-125, March.
    2. Edith Gabriel & Peter J. Diggle, 2009. "Second‐order analysis of inhomogeneous spatio‐temporal point process data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(1), pages 43-51, February.
    3. Yongtao Guan & Michael Sherman & James A. Calvin, 2004. "A Nonparametric Test for Spatial Isotropy Using Subsampling," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 810-821, January.
    4. Claudia Redenbach & Aila Särkkä & Johannes Freitag & Katja Schladitz, 2009. "Anisotropy analysis of pressed point processes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 93(3), pages 237-261, September.
    5. A. J. Baddeley & J. Møller & R. Waagepetersen, 2000. "Non‐ and semi‐parametric estimation of interaction in inhomogeneous point patterns," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 54(3), pages 329-350, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jesper Møller & Farzaneh Safavimanesh & Jakob Gulddahl Rasmussen, 2016. "The cylindrical $K$-function and Poisson line cluster point processes," Biometrika, Biometrika Trust, vol. 103(4), pages 937-954.
    2. Edith Gabriel, 2014. "Estimating Second-Order Characteristics of Inhomogeneous Spatio-Temporal Point Processes," Methodology and Computing in Applied Probability, Springer, vol. 16(2), pages 411-431, June.
    3. Ute Hahn & Eva B. Vedel Jensen, 2016. "Hidden Second-order Stationary Spatial Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 455-475, June.
    4. Arbia, Giuseppe & Espa, Giuseppe & Giuliani, Diego & Dickson, Maria Michela, 2014. "Spatio-temporal clustering in the pharmaceutical and medical device manufacturing industry: A geographical micro-level analysis," Regional Science and Urban Economics, Elsevier, vol. 49(C), pages 298-304.
    5. D'Angelo, Nicoletta & Adelfio, Giada & Mateu, Jorge, 2023. "Locally weighted minimum contrast estimation for spatio-temporal log-Gaussian Cox processes," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    6. Jesper Møller & Heidi S. Christensen & Francisco Cuevas-Pacheco & Andreas D. Christoffersen, 2021. "Structured Space-Sphere Point Processes and K-Functions," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 569-591, June.
    7. O. Cronie & M. N. M. Van Lieshout, 2015. "A J -function for Inhomogeneous Spatio-temporal Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 562-579, June.
    8. Jesper Møller & Håkon Toftaker, 2014. "Geometric Anisotropic Spatial Point Pattern Analysis and Cox Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 414-435, June.
    9. Jiří Dvořák & Michaela Prokešová, 2016. "Parameter Estimation for Inhomogeneous Space-Time Shot-Noise Cox Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 939-961, December.
    10. Nicoletta D’Angelo & Giada Adelfio & Jorge Mateu, 2023. "Local inhomogeneous second-order characteristics for spatio-temporal point processes occurring on linear networks," Statistical Papers, Springer, vol. 64(3), pages 779-805, June.
    11. Ghorbani, Mohammad & Vafaei, Nafiseh & Dvořák, Jiří & Myllymäki, Mari, 2021. "Testing the first-order separability hypothesis for spatio-temporal point patterns," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    12. Michaela Prokešová & Jiří Dvořák, 2014. "Statistics for Inhomogeneous Space-Time Shot-Noise Cox Processes," Methodology and Computing in Applied Probability, Springer, vol. 16(2), pages 433-449, June.
    13. Arbia, G. & Espa, G. & Giuliani, D. & Mazzitelli, A., 2012. "Clusters of firms in an inhomogeneous space: The high-tech industries in Milan," Economic Modelling, Elsevier, vol. 29(1), pages 3-11.
    14. Yongtao Guan, 2008. "A KPSS Test for Stationarity for Spatial Point Processes," Biometrics, The International Biometric Society, vol. 64(3), pages 800-806, September.
    15. Guan, Yongtao, 2007. "A least-squares cross-validation bandwidth selection approach in pair correlation function estimations," Statistics & Probability Letters, Elsevier, vol. 77(18), pages 1722-1729, December.
    16. Giuseppe Espa & Giuseppe Arbia & Diego Giuliani, 2013. "Conditional versus unconditional industrial agglomeration: disentangling spatial dependence and spatial heterogeneity in the analysis of ICT firms’ distribution in Milan," Journal of Geographical Systems, Springer, vol. 15(1), pages 31-50, January.
    17. Edith Gabriel & Peter J. Diggle, 2009. "Second‐order analysis of inhomogeneous spatio‐temporal point process data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(1), pages 43-51, February.
    18. Kateřina Koňasová & Jiří Dvořák, 2021. "Stochastic Reconstruction for Inhomogeneous Point Patterns," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 527-547, June.
    19. Redenbach, Claudia & Särkkä, Aila, 2013. "Parameter estimation for growth interaction processes using spatio-temporal information," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 672-683.
    20. Saltré, F. & Chuine, I. & Brewer, S. & Gaucherel, C., 2009. "A phenomenological model without dispersal kernel to model species migration," Ecological Modelling, Elsevier, vol. 220(24), pages 3546-3554.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:69:y:2015:i:1:p:49-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.