IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v43y2016i2p416-435.html
   My bibliography  Save this article

Consistent Smooth Bootstrap Kernel Intensity Estimation for Inhomogeneous Spatial Poisson Point Processes

Author

Listed:
  • Isabel Fuentes-Santos
  • Wenceslao González-Manteiga
  • Jorge Mateu

Abstract

No abstract is available for this item.

Suggested Citation

  • Isabel Fuentes-Santos & Wenceslao González-Manteiga & Jorge Mateu, 2016. "Consistent Smooth Bootstrap Kernel Intensity Estimation for Inhomogeneous Spatial Poisson Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 416-435, June.
  • Handle: RePEc:bla:scjsta:v:43:y:2016:i:2:p:416-435
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/sjos.12183
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guan, Yongtao & Loh, Ji Meng, 2007. "A Thinned Block Bootstrap Variance Estimation Procedure for Inhomogeneous Spatial Point Patterns," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1377-1386, December.
    2. Cao, R., 1993. "Bootstrapping the Mean Integrated Squared Error," Journal of Multivariate Analysis, Elsevier, vol. 45(1), pages 137-160, April.
    3. Lionel Cucala, 2008. "Intensity Estimation for Spatial Point Processes Observed with Noise," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(2), pages 322-334, June.
    4. Yongtao Guan, 2008. "A goodness-of-fit test for inhomogeneous spatial Poisson processes," Biometrika, Biometrika Trust, vol. 95(4), pages 831-845.
    5. Tarn Duong & Martin L. Hazelton, 2005. "Cross‐validation Bandwidth Matrices for Multivariate Kernel Density Estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(3), pages 485-506, September.
    6. Yongtao Guan, 2007. "A Composite Likelihood Cross‐validation Approach in Selecting Bandwidth for the Estimation of the Pair Correlation Function," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(2), pages 336-346, June.
    7. Peter Diggle, 1985. "A Kernel Method for Smoothing Point Process Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 34(2), pages 138-147, June.
    8. Guan, Yongtao, 2008. "On Consistent Nonparametric Intensity Estimation for Inhomogeneous Spatial Point Processes," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1238-1247.
    9. Rasmus Plenge Waagepetersen, 2007. "An Estimating Function Approach to Inference for Inhomogeneous Neyman–Scott Processes," Biometrics, The International Biometric Society, vol. 63(1), pages 252-258, March.
    10. Brooks, Maria Mori & Marron, J. Stephen, 1991. "Asymptotic optimality of the least-squares cross-validation bandwidth for kernel estimates of intensity functions," Stochastic Processes and their Applications, Elsevier, vol. 38(1), pages 157-165, June.
    11. Baddeley, Adrian & Turner, Rolf, 2005. "spatstat: An R Package for Analyzing Spatial Point Patterns," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 12(i06).
    12. Cao, Ricardo & Cuevas, Antonio & Gonzalez Manteiga, Wensceslao, 1994. "A comparative study of several smoothing methods in density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 17(2), pages 153-176, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Federico Ferraccioli & Eleonora Arnone & Livio Finos & James O. Ramsay & Laura M. Sangalli, 2021. "Nonparametric density estimation over complicated domains," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 346-368, April.
    2. M. N. M. Lieshout, 2020. "Infill Asymptotics and Bandwidth Selection for Kernel Estimators of Spatial Intensity Functions," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 995-1008, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borrajo, M.I. & González-Manteiga, W. & Martínez-Miranda, M.D., 2020. "Bootstrapping kernel intensity estimation for inhomogeneous point processes with spatial covariates," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    2. Yu Ryan Yue & Ji Meng Loh, 2011. "Bayesian Semiparametric Intensity Estimation for Inhomogeneous Spatial Point Processes," Biometrics, The International Biometric Society, vol. 67(3), pages 937-946, September.
    3. Ute Hahn & Eva B. Vedel Jensen, 2016. "Hidden Second-order Stationary Spatial Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 455-475, June.
    4. Nicoletta D’Angelo & Marianna Siino & Antonino D’Alessandro & Giada Adelfio, 2022. "Local spatial log-Gaussian Cox processes for seismic data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(4), pages 633-671, December.
    5. Jesper Møller & Carlos Díaz‐Avalos, 2010. "Structured Spatio‐Temporal Shot‐Noise Cox Point Process Models, with a View to Modelling Forest Fires," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 2-25, March.
    6. Barbeito, Inés & Cao, Ricardo, 2016. "Smoothed stationary bootstrap bandwidth selection for density estimation with dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 130-147.
    7. M. N. M. Lieshout, 2020. "Infill Asymptotics and Bandwidth Selection for Kernel Estimators of Spatial Intensity Functions," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 995-1008, September.
    8. García-Portugués, Eduardo & Crujeiras, Rosa M. & González-Manteiga, Wenceslao, 2013. "Kernel density estimation for directional–linear data," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 152-175.
    9. Ondřej Šedivý & Antti Penttinen, 2014. "Intensity estimation for inhomogeneous Gibbs point process with covariates-dependent chemical activity," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(3), pages 225-249, August.
    10. Marcon, Eric & Puech, Florence, 2017. "A typology of distance-based measures of spatial concentration," Regional Science and Urban Economics, Elsevier, vol. 62(C), pages 56-67.
    11. Heiler, Siegfried & Feng, Yuanhua, 1995. "A simple root n bandwidth selector for nonparametric regression," Discussion Papers, Series II 286, University of Konstanz, Collaborative Research Centre (SFB) 178 "Internationalization of the Economy".
    12. Yongtao Guan & Hansheng Wang, 2010. "Sufficient dimension reduction for spatial point processes directed by Gaussian random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 367-387, June.
    13. Coeurjolly, Jean-François & Reynaud-Bouret, Patricia, 2019. "A concentration inequality for inhomogeneous Neyman–Scott point processes," Statistics & Probability Letters, Elsevier, vol. 148(C), pages 30-34.
    14. Devin S. Johnson & Jeffrey L. Laake & Jay M. Ver Hoef, 2010. "A Model-Based Approach for Making Ecological Inference from Distance Sampling Data," Biometrics, The International Biometric Society, vol. 66(1), pages 310-318, March.
    15. María Cristina Rodríguez Rangel & Marcelino Sánchez Rivero & Julián Ramajo Hernández, 2020. "A Spatial Analysis of Intensity in Tourism Accommodation: An Application for Extremadura (Spain)," Economies, MDPI, vol. 8(2), pages 1-21, April.
    16. Baddeley, Adrian & Hardegen, Andrew & Lawrence, Thomas & Milne, Robin K. & Nair, Gopalan & Rakshit, Suman, 2017. "On two-stage Monte Carlo tests of composite hypotheses," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 75-87.
    17. J. M. Vilar & R. Cao & M. C. Ausin & C. Gonzalez-Fragueiro, 2009. "Nonparametric analysis of aggregate loss models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(2), pages 149-166.
    18. Michaela Prokešová & Jiří Dvořák & Eva B. Vedel Jensen, 2017. "Two-step estimation procedures for inhomogeneous shot-noise Cox processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(3), pages 513-542, June.
    19. Jean-François Coeurjolly, 2017. "Median-based estimation of the intensity of a spatial point process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(2), pages 303-331, April.
    20. Marie-Colette N. M. Lieshout, 2012. "On Estimation of the Intensity Function of a Point Process," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 567-578, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:43:y:2016:i:2:p:416-435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.