Advanced Search
MyIDEAS: Login

Bayesian change-point analysis for atomic force microscopy and soft material indentation

Contents:

Author Info

  • Daniel Rudoy
  • Shelten G. Yuen
  • Robert D. Howe
  • Patrick J. Wolfe
Registered author(s):

    Abstract

    Material indentation studies, in which a probe is brought into controlled physical contact with an experimental sample, have long been a primary means by which scientists characterize the mechanical properties of materials. More recently, the advent of atomic force microscopy, which operates on the same fundamental principle, has in turn revolutionized the nanoscale analysis of soft biomaterials such as cells and tissues. The paper addresses the inferential problems that are associated with material indentation and atomic force microscopy, through a framework for the change-point analysis of pre-contact and post-contact data that is applicable to experiments across a variety of physical scales. A hierarchical Bayesian model is proposed to account for experimentally observed change-point smoothness constraints and measurement error variability, with efficient Monte Carlo methods developed and employed to realize inference via posterior sampling for parameters such as Young's modulus, which is a key quantifier of material stiffness. These results are the first to provide the materials science community with rigorous inference procedures and quantification of uncertainty, via optimized and fully automated high throughput algorithms, implemented as the publicly available software package BayesCP. To demonstrate the consistent accuracy and wide applicability of this approach, results are shown for a variety of data sets from both macromaterials and micromaterials experiments-including silicone, neurons and red blood cells-conducted by the authors and others. Copyright (c) 2010 Royal Statistical Society.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-9876.2010.00715.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Royal Statistical Society in its journal Journal of the Royal Statistical Society: Series C (Applied Statistics).

    Volume (Year): 59 (2010)
    Issue (Month): 4 ()
    Pages: 573-593

    as in new window
    Handle: RePEc:bla:jorssc:v:59:y:2010:i:4:p:573-593

    Contact details of provider:
    Postal: 12 Errol Street, London EC1Y 8LX, United Kingdom
    Phone: -44-171-638-8998
    Fax: -44-171-256-7598
    Email:
    Web page: http://wileyonlinelibrary.com/journal/rssc
    More information through EDIRC

    Order Information:
    Web: http://ordering.onlinelibrary.wiley.com/subs.asp?ref=1467-9876&doi=10.1111/(ISSN)1467-9876

    Related research

    Keywords:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. van den Hout, Ardo & Muniz-Terrera, Graciela & Matthews, Fiona E., 2013. "Change point models for cognitive tests using semi-parametric maximum likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 684-698.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:59:y:2010:i:4:p:573-593. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.