Advanced Search
MyIDEAS: Login

Modelling stochastic order in the analysis of receiver operating characteristic data: Bayesian non-parametric approaches

Contents:

Author Info

  • Timothy E. Hanson
  • Athanasios Kottas
  • Adam J. Branscum
Registered author(s):

    Abstract

    The evaluation of the performance of a continuous diagnostic measure is a commonly encountered task in medical research. We develop Bayesian non-parametric models that use Dirichlet process mixtures and mixtures of Polya trees for the analysis of continuous serologic data. The modelling approach differs from traditional approaches to the analysis of receiver operating characteristic curve data in that it incorporates a stochastic ordering constraint for the distributions of serologic values for the infected and non-infected populations. Biologically such a constraint is virtually always feasible because serologic values from infected individuals tend to be higher than those for non-infected individuals. The models proposed provide data-driven inferences for the infected and non-infected population distributions, and for the receiver operating characteristic curve and corresponding area under the curve. We illustrate and compare the predictive performance of the Dirichlet process mixture and mixture of Polya trees approaches by using serologic data for Johne's disease in dairy cattle. Copyright (c) 2008 Royal Statistical Society.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-9876.2007.00609.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Royal Statistical Society in its journal Journal of the Royal Statistical Society: Series C (Applied Statistics).

    Volume (Year): 57 (2008)
    Issue (Month): 2 ()
    Pages: 207-225

    as in new window
    Handle: RePEc:bla:jorssc:v:57:y:2008:i:2:p:207-225

    Contact details of provider:
    Postal: 12 Errol Street, London EC1Y 8LX, United Kingdom
    Phone: -44-171-638-8998
    Fax: -44-171-256-7598
    Email:
    Web page: http://wileyonlinelibrary.com/journal/rssc
    More information through EDIRC

    Order Information:
    Web: http://ordering.onlinelibrary.wiley.com/subs.asp?ref=1467-9876&doi=10.1111/(ISSN)1467-9876

    Related research

    Keywords:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Chen, Yuhui & Hanson, Timothy E., 2014. "Bayesian nonparametric k-sample tests for censored and uncensored data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 335-346.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:57:y:2008:i:2:p:207-225. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.