IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v66y2004i1p31-46.html
   My bibliography  Save this article

Low order approximations in deconvolution and regression with errors in variables

Author

Listed:
  • Raymond J. Carroll
  • Peter Hall

Abstract

Summary. We suggest two new methods, which are applicable to both deconvolution and regression with errors in explanatory variables, for nonparametric inference. The two approaches involve kernel or orthogonal series methods. They are based on defining a low order approximation to the problem at hand, and proceed by constructing relatively accurate estimators of that quantity rather than attempting to estimate the true target functions consistently. Of course, both techniques could be employed to construct consistent estimators, but in many contexts of importance (e.g. those where the errors are Gaussian) consistency is, from a practical viewpoint, an unattainable goal. We rephrase the problem in a form where an explicit, interpretable, low order approximation is available. The information that we require about the error distribution (the error‐in‐variables distribution, in the case of regression) is only in the form of low order moments and so is readily obtainable by a rudimentary analysis of indirect measurements of errors, e.g. through repeated measurements. In particular, we do not need to estimate a function, such as a characteristic function, which expresses detailed properties of the error distribution. This feature of our methods, coupled with the fact that all our estimators are explicitly defined in terms of readily computable averages, means that the methods are particularly economical in computing time.

Suggested Citation

  • Raymond J. Carroll & Peter Hall, 2004. "Low order approximations in deconvolution and regression with errors in variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 31-46, February.
  • Handle: RePEc:bla:jorssb:v:66:y:2004:i:1:p:31-46
    DOI: 10.1111/j.1467-9868.2004.00430.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9868.2004.00430.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9868.2004.00430.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John Staudenmayer & David Ruppert, 2004. "Local polynomial regression and simulation–extrapolation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 17-30, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Delaigle, Aurore & Meister, Alexander, 2007. "Nonparametric Regression Estimation in the Heteroscedastic Errors-in-Variables Problem," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1416-1426, December.
    2. Eric Weese & Masayoshi Hayashi & Masashi Nishikawa, 2015. "Inefficiency and Self-Determination: Simulation-based Evidence from Meiji Japan," CIRJE F-Series CIRJE-F-989, CIRJE, Faculty of Economics, University of Tokyo.
    3. Marco Di Marzio & Stefania Fensore & Agnese Panzera & Charles C. Taylor, 2022. "Density estimation for circular data observed with errors," Biometrics, The International Biometric Society, vol. 78(1), pages 248-260, March.
    4. Marco Di Marzio & Stefania Fensore & Charles C. Taylor, 2023. "Kernel regression for errors-in-variables problems in the circular domain," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(4), pages 1217-1237, October.
    5. Julie McIntyre & Brent A. Johnson & Stephen M. Rappaport, 2018. "Monte Carlo methods for nonparametric regression with heteroscedastic measurement error," Biometrics, The International Biometric Society, vol. 74(2), pages 498-505, June.
    6. Abhra Sarkar & Bani K. Mallick & Raymond J. Carroll, 2014. "Bayesian semiparametric regression in the presence of conditionally heteroscedastic measurement and regression errors," Biometrics, The International Biometric Society, vol. 70(4), pages 823-834, December.
    7. Delaigle, Aurore & Fan, Jianqing & Carroll, Raymond J., 2009. "A Design-Adaptive Local Polynomial Estimator for the Errors-in-Variables Problem," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 348-359.
    8. William Horrace & Christopher Parmeter, 2011. "Semiparametric deconvolution with unknown error variance," Journal of Productivity Analysis, Springer, vol. 35(2), pages 129-141, April.
    9. Carrasco, Marine & Florens, Jean-Pierre, 2011. "A Spectral Method For Deconvolving A Density," Econometric Theory, Cambridge University Press, vol. 27(3), pages 546-581, June.
    10. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    11. Thomas, Laine & Stefanski, Leonard A. & Davidian, Marie, 2013. "Moment adjusted imputation for multivariate measurement error data with applications to logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 15-24.
    12. Wu, Ximing & Perloff, Jeffrey M., 2007. "Information-Theoretic Deconvolution Approximation of Treatment Effect Distribution," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt6bm6n30x, Department of Agricultural & Resource Economics, UC Berkeley.
    13. Staudenmayer, John & Ruppert, David & Buonaccorsi, John P., 2008. "Density Estimation in the Presence of Heteroscedastic Measurement Error," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 726-736, June.
    14. Matthew Backus & Gregory Lewis, 2016. "Dynamic Demand Estimation in Auction Markets," NBER Working Papers 22375, National Bureau of Economic Research, Inc.
    15. Martin L. Hazelton & Berwin A. Turlach, 2010. "Semiparametric Density Deconvolution," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 91-108, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Delaigle, Aurore & Fan, Jianqing & Carroll, Raymond J., 2009. "A Design-Adaptive Local Polynomial Estimator for the Errors-in-Variables Problem," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 348-359.
    2. Yicheng Kang & Xiaodong Gong & Jiti Gao & Peihua Qiu, 2016. "Error-in-Variables Jump Regression Using Local Clustering," Monash Econometrics and Business Statistics Working Papers 13/16, Monash University, Department of Econometrics and Business Statistics.
    3. Carroll, Raymond J. & Delaigle, Aurore & Hall, Peter, 2009. "Nonparametric Prediction in Measurement Error Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 993-1003.
    4. Yiping Yang & Tiejun Tong & Gaorong Li, 2019. "SIMEX estimation for single-index model with covariate measurement error," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(1), pages 137-161, March.
    5. Wang, Xiao-Feng & Fan, Zhaozhi & Wang, Bin, 2010. "Estimating smooth distribution function in the presence of heteroscedastic measurement errors," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 25-36, January.
    6. Julie McIntyre & Brent A. Johnson & Stephen M. Rappaport, 2018. "Monte Carlo methods for nonparametric regression with heteroscedastic measurement error," Biometrics, The International Biometric Society, vol. 74(2), pages 498-505, June.
    7. Lechner Sandra & Pohlmeier Winfried, 2005. "Data Masking by Noise Addition and the Estimation of Nonparametric Regression Models," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 225(5), pages 517-528, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:66:y:2004:i:1:p:31-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.