IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v185y2022i4p1584-1612.html
   My bibliography  Save this article

Weighting, informativeness and causal inference, with an application to rainfall enhancement

Author

Listed:
  • Ray Chambers
  • Setareh Ranjbar
  • Nicola Salvati
  • Barbara Pacini

Abstract

Sampling is informative when probabilities of sample inclusion depend on unknown variables that are correlated with a response variable of interest. When sample inclusion probabilities are available, inverse probability weighting can be used to account for informative sampling in such a situation, although usually at the cost of less precise inference. This paper reviews two important research contributions by Chris Skinner that modify these weights to reduce their variability while at the same time retaining consistency of the weighted estimators. In some cases, however, sample inclusion probabilities are not known, and are estimated as propensity scores. This is often the situation in causal analysis, and double robust methods that protect against the resulting misspecification of the sampling process have been the focus of much recent research. In this paper we propose two model‐assisted modifications to the popular inverse propensity score weighted estimator of an average treatment effect, and then illustrate their use in a causal analysis of a rainfall enhancement experiment that was carried out in Oman between 2013 and 2018.

Suggested Citation

  • Ray Chambers & Setareh Ranjbar & Nicola Salvati & Barbara Pacini, 2022. "Weighting, informativeness and causal inference, with an application to rainfall enhancement," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1584-1612, October.
  • Handle: RePEc:bla:jorssa:v:185:y:2022:i:4:p:1584-1612
    DOI: 10.1111/rssa.12873
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12873
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12873?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yilin Chen & Pengfei Li & Changbao Wu, 2020. "Doubly Robust Inference With Nonprobability Survey Samples," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 2011-2021, December.
    2. Jae Kwang Kim & C. J. Skinner, 2013. "Weighting in survey analysis under informative sampling," Biometrika, Biometrika Trust, vol. 100(2), pages 385-398.
    3. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    4. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    5. Elizabeth A. Stuart & Stephen R. Cole & Catherine P. Bradshaw & Philip J. Leaf, 2011. "The use of propensity scores to assess the generalizability of results from randomized trials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(2), pages 369-386, April.
    6. Tingting Zhou & Michael R. Elliott & Roderick J. A. Little, 2019. "Penalized Spline of Propensity Methods for Treatment Comparison: Rejoinder," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 35-38, January.
    7. Georgia Papadogeorgou & Fan Li, 2019. "Discussion of “Penalized Spline of Propensity Methods for Treatment Comparison”," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 32-35, January.
    8. Peisong Han, 2014. "Multiply Robust Estimation in Regression Analysis With Missing Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1159-1173, September.
    9. Jean-François Beaumont, 2008. "A new approach to weighting and inference in sample surveys," Biometrika, Biometrika Trust, vol. 95(3), pages 539-553.
    10. O. Saarela & L. R. Belzile & D. A. Stephens, 2016. "A Bayesian view of doubly robust causal inference," Biometrika, Biometrika Trust, vol. 103(3), pages 667-681.
    11. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881.
    12. Tingting Zhou & Michael R. Elliott & Roderick J. A. Little, 2019. "Penalized Spline of Propensity Methods for Treatment Comparison," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 1-19, January.
    13. Fan Li & Kari Lock Morgan & Alan M. Zaslavsky, 2018. "Balancing Covariates via Propensity Score Weighting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 390-400, January.
    14. Sixia Chen & David Haziza, 2017. "Multiply robust imputation procedures for the treatment of item nonresponse in surveys," Biometrika, Biometrika Trust, vol. 104(2), pages 439-453.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tingting Zhou & Michael R. Elliott & Roderick J. A. Little, 2022. "Addressing Disparities in the Propensity Score Distributions for Treatment Comparisons from Observational Studies," Stats, MDPI, vol. 5(4), pages 1-17, December.
    2. Davide Viviano & Jelena Bradic, 2021. "Dynamic covariate balancing: estimating treatment effects over time with potential local projections," Papers 2103.01280, arXiv.org, revised Jan 2024.
    3. Antonio R. Linero, 2023. "Prior and posterior checking of implicit causal assumptions," Biometrics, The International Biometric Society, vol. 79(4), pages 3153-3164, December.
    4. Shixiao Zhang & Peisong Han & Changbao Wu, 2023. "Calibration Techniques Encompassing Survey Sampling, Missing Data Analysis and Causal Inference," International Statistical Review, International Statistical Institute, vol. 91(2), pages 165-192, August.
    5. Ao Yuan & Anqi Yin & Ming T. Tan, 2021. "Enhanced Doubly Robust Procedure for Causal Inference," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(3), pages 454-478, December.
    6. Shu Yang & Yunshu Zhang, 2023. "Multiply robust matching estimators of average and quantile treatment effects," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 235-265, March.
    7. Tingting Zhou & Michael R. Elliott & Roderick J. A. Little, 2021. "Robust Causal Estimation from Observational Studies Using Penalized Spline of Propensity Score for Treatment Comparison," Stats, MDPI, vol. 4(2), pages 1-21, June.
    8. Maria Josefsson & Michael J. Daniels, 2021. "Bayesian semi‐parametric G‐computation for causal inference in a cohort study with MNAR dropout and death," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 398-414, March.
    9. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," SciencePo Working papers Main hal-03455978, HAL.
    10. Guido W. Imbens, 2020. "Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics," Journal of Economic Literature, American Economic Association, vol. 58(4), pages 1129-1179, December.
    11. Brian J. Reich & Shu Yang & Yawen Guan, 2022. "Discussion on “Spatial+: A novel approach to spatial confounding” by Dupont, Wood, and Augustin," Biometrics, The International Biometric Society, vol. 78(4), pages 1291-1294, December.
    12. Wang, Qihua & Su, Miaomiao & Wang, Ruoyu, 2021. "A beyond multiple robust approach for missing response problem," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    13. Chixiang Chen & Biyi Shen & Aiyi Liu & Rongling Wu & Ming Wang, 2021. "A multiple robust propensity score method for longitudinal analysis with intermittent missing data," Biometrics, The International Biometric Society, vol. 77(2), pages 519-532, June.
    14. Kevin P. Josey & Elizabeth Juarez‐Colunga & Fan Yang & Debashis Ghosh, 2021. "A framework for covariate balance using Bregman distances," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 790-816, September.
    15. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    16. Ranjbar, Setareh & Salvati, Nicola & Pacini, Barbara, 2023. "Estimating heterogeneous causal effects in observational studies using small area predictors," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    17. Jason Poulos & Shuxi Zeng, 2021. "RNN‐based counterfactual prediction, with an application to homestead policy and public schooling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 1124-1139, August.
    18. Xinyu Li & Wang Miao & Fang Lu & Xiao‐Hua Zhou, 2023. "Improving efficiency of inference in clinical trials with external control data," Biometrics, The International Biometric Society, vol. 79(1), pages 394-403, March.
    19. Verena Lauber & Johanna Storck, 2016. "Helping with the Kids? How Family-Friendly Workplaces Affect Parental Well-Being and Behavior," Discussion Papers of DIW Berlin 1630, DIW Berlin, German Institute for Economic Research.
    20. Peisong Han & Linglong Kong & Jiwei Zhao & Xingcai Zhou, 2019. "A general framework for quantile estimation with incomplete data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 305-333, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:185:y:2022:i:4:p:1584-1612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.