IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v77y2021i2p519-532.html
   My bibliography  Save this article

A multiple robust propensity score method for longitudinal analysis with intermittent missing data

Author

Listed:
  • Chixiang Chen
  • Biyi Shen
  • Aiyi Liu
  • Rongling Wu
  • Ming Wang

Abstract

Longitudinal data are very popular in practice, but they are often missing in either outcomes or time‐dependent risk factors, making them highly unbalanced and complex. Missing data may contain various missing patterns or mechanisms, and how to properly handle it for unbiased and valid inference still presents a significant challenge. Here, we propose a novel semiparametric framework for analyzing longitudinal data with both missing responses and covariates that are missing at random and intermittent, a general and widely encountered situation in observational studies. Within this framework, we consider multiple robust estimation procedures based on innovative calibrated propensity scores, which offers additional relaxation of the misspecification of missing data mechanisms and shows more satisfactory numerical performance. Also, the corresponding robust information criterion on consistent variable selection for our proposed model is developed based on empirical likelihood‐based methods. These advocated methods are evaluated in both theory and extensive simulation studies in a variety of situations, showing competing properties and advantages compared to the existing approaches. We illustrate the utility of our approach by analyzing the data from the HIV Epidemiology Research Study.

Suggested Citation

  • Chixiang Chen & Biyi Shen & Aiyi Liu & Rongling Wu & Ming Wang, 2021. "A multiple robust propensity score method for longitudinal analysis with intermittent missing data," Biometrics, The International Biometric Society, vol. 77(2), pages 519-532, June.
  • Handle: RePEc:bla:biomet:v:77:y:2021:i:2:p:519-532
    DOI: 10.1111/biom.13330
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13330
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13330?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Baojiang Chen & Xiao-Hua Zhou, 2011. "Doubly Robust Estimates for Binary Longitudinal Data Analysis with Missing Response and Missing Covariates," Biometrics, The International Biometric Society, vol. 67(3), pages 830-842, September.
    2. Chen, Baojiang & Yi, Grace Y. & Cook, Richard J., 2010. "Weighted Generalized Estimating Functions for Longitudinal Response and Covariate Data That Are Missing at Random," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 336-353.
    3. Chung-Wei Shen & Yi-Hau Chen, 2012. "Model Selection for Generalized Estimating Equations Accommodating Dropout Missingness," Biometrics, The International Biometric Society, vol. 68(4), pages 1046-1054, December.
    4. Chixiang Chen & Biyi Shen & Lijun Zhang & Yuan Xue & Ming Wang, 2019. "Empirical‐likelihood‐based criteria for model selection on marginal analysis of longitudinal data with dropout missingness," Biometrics, The International Biometric Society, vol. 75(3), pages 950-965, September.
    5. Peisong Han & Lu Wang, 2013. "Estimation with missing data: beyond double robustness," Biometrika, Biometrika Trust, vol. 100(2), pages 417-430.
    6. Peisong Han, 2016. "Intrinsic efficiency and multiple robustness in longitudinal studies with drop-out," Biometrika, Biometrika Trust, vol. 103(3), pages 683-700.
    7. Huiming Lin & Bo Fu & Guoyou Qin & Zhongyi Zhu, 2017. "Doubly robust estimation of generalized partial linear models for longitudinal data with dropouts," Biometrics, The International Biometric Society, vol. 73(4), pages 1132-1139, December.
    8. Peisong Han, 2014. "Multiply Robust Estimation in Regression Analysis With Missing Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1159-1173, September.
    9. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    10. Sixia Chen & David Haziza, 2017. "Multiply robust imputation procedures for the treatment of item nonresponse in surveys," Biometrika, Biometrika Trust, vol. 104(2), pages 439-453.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chixiang Chen & Ming Wang & Shuo Chen, 2023. "An efficient data integration scheme for synthesizing information from multiple secondary datasets for the parameter inference of the main analysis," Biometrics, The International Biometric Society, vol. 79(4), pages 2947-2960, December.
    2. Jiachen Cai & Ning Zhang & Xin Zhou & Donna Spiegelman & Molin Wang, 2023. "Correcting for bias due to mismeasured exposure history in longitudinal studies with continuous outcomes," Biometrics, The International Biometric Society, vol. 79(4), pages 3739-3751, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shixiao Zhang & Peisong Han & Changbao Wu, 2023. "Calibration Techniques Encompassing Survey Sampling, Missing Data Analysis and Causal Inference," International Statistical Review, International Statistical Institute, vol. 91(2), pages 165-192, August.
    2. Peisong Han & Linglong Kong & Jiwei Zhao & Xingcai Zhou, 2019. "A general framework for quantile estimation with incomplete data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 305-333, April.
    3. Wang, Qihua & Su, Miaomiao & Wang, Ruoyu, 2021. "A beyond multiple robust approach for missing response problem," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    4. Hamori, Shigeyuki & Motegi, Kaiji & Zhang, Zheng, 2019. "Calibration estimation of semiparametric copula models with data missing at random," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 85-109.
    5. Shu Yang & Yunshu Zhang, 2023. "Multiply robust matching estimators of average and quantile treatment effects," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 235-265, March.
    6. Chen, Sixia & Haziza, David, 2018. "Jackknife empirical likelihood method for multiply robust estimation with missing data," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 258-268.
    7. Lucia Babino & Andrea Rotnitzky & James Robins, 2019. "Multiple robust estimation of marginal structural mean models for unconstrained outcomes," Biometrics, The International Biometric Society, vol. 75(1), pages 90-99, March.
    8. Chen, Sixia & Haziza, David, 2023. "A unified framework of multiply robust estimation approaches for handling incomplete data," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    9. Xiaogang Duan & Guosheng Yin, 2017. "Ensemble Approaches to Estimating the Population Mean with Missing Response," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 899-917, December.
    10. Zhuoer Sun & Suojin Wang, 2019. "Semiparametric estimation in regression with missing covariates using single-index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1201-1232, October.
    11. Changbao Wu & Shixiao Zhang, 2019. "Comments on: Deville and Särndal’s calibration: revisiting a 25 years old successful optimization problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1082-1086, December.
    12. Sixia Chen & David Haziza, 2017. "Multiply robust imputation procedures for zero-inflated distributions in surveys," METRON, Springer;Sapienza Università di Roma, vol. 75(3), pages 333-343, December.
    13. Han, Peisong & Song, Peter X.-K. & Wang, Lu, 2015. "Achieving semiparametric efficiency bound in longitudinal data analysis with dropouts," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 59-70.
    14. Xiang Zhou, 2022. "Semiparametric estimation for causal mediation analysis with multiple causally ordered mediators," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 794-821, July.
    15. Ray Chambers & Setareh Ranjbar & Nicola Salvati & Barbara Pacini, 2022. "Weighting, informativeness and causal inference, with an application to rainfall enhancement," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1584-1612, October.
    16. Satoshi Hattori & Masayuki Henmi, 2014. "Stratified doubly robust estimators for the average causal effect," Biometrics, The International Biometric Society, vol. 70(2), pages 270-277, June.
    17. Baojiang Chen & Xiao-Hua Zhou, 2011. "Doubly Robust Estimates for Binary Longitudinal Data Analysis with Missing Response and Missing Covariates," Biometrics, The International Biometric Society, vol. 67(3), pages 830-842, September.
    18. He, Yizeng & Kim, Soyoung & Kim, Mi-Ok & Saber, Wael & Ahn, Kwang Woo, 2021. "Optimal treatment regimes for competing risk data using doubly robust outcome weighted learning with bi-level variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    19. Peisong Han, 2016. "Combining Inverse Probability Weighting and Multiple Imputation to Improve Robustness of Estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 246-260, March.
    20. Wei, Kecheng & Qin, Guoyou & Zhang, Jiajia & Sui, Xuemei, 2022. "Doubly robust estimation in causal inference with missing outcomes: With an application to the Aerobics Center Longitudinal Study," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:77:y:2021:i:2:p:519-532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.