IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v27y2023i5p1252-1265.html
   My bibliography  Save this article

Data implementation matters: Effect of software choice and LCI database evolution on a comparative LCA study of permanent magnets

Author

Listed:
  • Brenda Miranda Xicotencatl
  • René Kleijn
  • Sander van Nielen
  • Franco Donati
  • Benjamin Sprecher
  • Arnold Tukker

Abstract

Life cycle assessment (LCA) databases and software evolve. We analyzed to which extent software and evolving life cycle inventory databases affect the comparison of technology alternatives, using a comparative LCA on permanent magnets as a case study, with two selected software tools: CMLCA and Brightway LCA. We migrated the system models from the CMLCA to Brightway LCA software and alternated between the ecoinvent database versions 2.2 and 3.1 to 3.6 in the system background. When using ecoinvent v3.6 instead of v2.2, the change of the indicator results ranged from −34%$ - 34{\rm{\% }}$ to 283%. The evolution of the ecoinvent database impacted the absolute amounts of the characterized results and the relative performance between alternatives. The impact category with the highest variability was ionizing radiation, which even showed a ranking inversion with ecoinvent v3.4. In contrast, the impact of using CMLCA or Brightway was negligible because the same data and modeling assumptions caused percentage differences below 0.4%. During the semi‐automated data migration to Brightway, we identified 23 environmental flows in the CMLCA model that were not paired with their corresponding characterization factors in the published study of reference. This error had led to an underestimation of 63% in the photochemical oxidation indicator of one of the alternatives. This underestimation relates to an interoperability issue regarding the nomenclature of environmental flows in software alternatives and is a matter of data implementation rather than an issue intrinsic to the selected software. Finally, we identified improvement opportunities for the transparency and reusability of LCA models. This article met the requirements for a Gold‐Gold JIE data openness badge described at http://jie.click/badges.

Suggested Citation

  • Brenda Miranda Xicotencatl & René Kleijn & Sander van Nielen & Franco Donati & Benjamin Sprecher & Arnold Tukker, 2023. "Data implementation matters: Effect of software choice and LCI database evolution on a comparative LCA study of permanent magnets," Journal of Industrial Ecology, Yale University, vol. 27(5), pages 1252-1265, October.
  • Handle: RePEc:bla:inecol:v:27:y:2023:i:5:p:1252-1265
    DOI: 10.1111/jiec.13410
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.13410
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.13410?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Brandon Kuczenski, 2019. "Disclosure of Product System Models in Life Cycle Assessment: Achieving Transparency and Privacy," Journal of Industrial Ecology, Yale University, vol. 23(3), pages 574-586, June.
    2. Erik Pauer & Bernhard Wohner & Manfred Tacker, 2020. "The Influence of Database Selection on Environmental Impact Results. Life Cycle Assessment of Packaging Using GaBi, Ecoinvent 3.6, and the Environmental Footprint Database," Sustainability, MDPI, vol. 12(23), pages 1-14, November.
    3. Ricky Speck & Susan Selke & Rafael Auras & James Fitzsimmons, 2016. "Life Cycle Assessment Software: Selection Can Impact Results," Journal of Industrial Ecology, Yale University, vol. 20(1), pages 18-28, February.
    4. Edgar Hertwich & Niko Heeren & Brandon Kuczenski & Guillaume Majeau†Bettez & Rupert J. Myers & Stefan Pauliuk & Konstantin Stadler & Reid Lifset, 2018. "Nullius in Verba: Advancing Data Transparency in Industrial Ecology," Journal of Industrial Ecology, Yale University, vol. 22(1), pages 6-17, February.
    5. Agneta Ghose & Matteo Lissandrini & Emil Riis Hansen & Bo Pedersen Weidema, 2022. "A core ontology for modeling life cycle sustainability assessment on the Semantic Web," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 731-747, June.
    6. Stefan Pauliuk & Niko Heeren, 2020. "ODYM—An open software framework for studying dynamic material systems: Principles, implementation, and data structures," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 446-458, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. James Joyce & Anna Björklund, 2022. "Futura: A new tool for transparent and shareable scenario analysis in prospective life cycle assessment," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 134-144, February.
    2. Qingshi Tu & Edgar G. Hertwich, 2022. "A mechanistic model to link technical specifications of vehicle end‐of‐life treatment with the potential of closed‐loop recycling of post‐consumer scrap alloys," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 704-717, June.
    3. Bruna Alexandra Elias Mota & Ana Isabel Cerqueira de Sousa Gouveia Carvalho & Maria Isabel Azevedo Rodrigues Gomes & Ana Paula Ferreira Dias Barbosa‐Povoa, 2020. "Business strategy for sustainable development: Impact of life cycle inventory and life cycle impact assessment steps in supply chain design and planning," Business Strategy and the Environment, Wiley Blackwell, vol. 29(1), pages 87-117, January.
    4. Sarah Schmidt & David Laner, 2023. "The environmental performance of plastic packaging waste management in Germany: Current and future key factors," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1447-1460, December.
    5. Cátia da Silva & Ana Paula Barbosa‐Póvoa & Ana Carvalho, 2022. "Towards sustainable development: Green supply chain design and planning using monetization methods," Business Strategy and the Environment, Wiley Blackwell, vol. 31(4), pages 1369-1394, May.
    6. Erik Pauer & Bernhard Wohner & Manfred Tacker, 2020. "The Influence of Database Selection on Environmental Impact Results. Life Cycle Assessment of Packaging Using GaBi, Ecoinvent 3.6, and the Environmental Footprint Database," Sustainability, MDPI, vol. 12(23), pages 1-14, November.
    7. Francisco Portillo & Rosa María García & Alfredo Alcayde & José Antonio Gázquez & Manuel Fernández-Ros & Nuria Novas, 2021. "Prospective Environmental and Economic Assessment of a Sensor Network," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    8. Sileryte, Rusne & Sabbe, Arnout & Bouzas, Vasileios & Meister, Kozmo & Wandl, Alexander & van Timmeren, Arjan, 2022. "European Waste Statistics data for a Circular Economy Monitor: opportunities and limitations from the Amsterdam Metropolitan Region," OSF Preprints da6f2, Center for Open Science.
    9. Julien Pedneault & Guillaume Majeau‐Bettez & Stefan Pauliuk & Manuele Margni, 2022. "Sector‐specific scenarios for future stocks and flows of aluminum: An analysis based on shared socioeconomic pathways," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1728-1746, October.
    10. Pan, W. & Teng, Y., 2021. "A systematic investigation into the methodological variables of embodied carbon assessment of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    11. Stephan, André & Stephan, Laurent, 2020. "Achieving net zero life cycle primary energy and greenhouse gas emissions apartment buildings in a Mediterranean climate," Applied Energy, Elsevier, vol. 280(C).
    12. Stefan Pauliuk & Niko Heeren, 2020. "ODYM—An open software framework for studying dynamic material systems: Principles, implementation, and data structures," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 446-458, June.
    13. Tomer Fishman & Niko Heeren & Stefan Pauliuk & Peter Berrill & Qingshi Tu & Paul Wolfram & Edgar G. Hertwich, 2021. "A comprehensive set of global scenarios of housing, mobility, and material efficiency for material cycles and energy systems modeling," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 305-320, April.
    14. Chunbo Zhang & Xiang Zhao & Romain Sacchi & Fengqi You, 2023. "Trade-off between critical metal requirement and transportation decarbonization in automotive electrification," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    15. Marco Vacchi & Cristina Siligardi & Erika Iveth Cedillo-González & Anna Maria Ferrari & Davide Settembre-Blundo, 2021. "Industry 4.0 and Smart Data as Enablers of the Circular Economy in Manufacturing: Product Re-Engineering with Circular Eco-Design," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    16. Davide Rovelli & Carlo Brondi & Michele Andreotti & Elisabetta Abbate & Maurizio Zanforlin & Andrea Ballarino, 2022. "A Modular Tool to Support Data Management for LCA in Industry: Methodology, Application and Potentialities," Sustainability, MDPI, vol. 14(7), pages 1-31, March.
    17. Christine Roxanne Hung & Paul Kishimoto & Volker Krey & Anders Hammer Strømman & Guillaume Majeau‐Bettez, 2022. "ECOPT2: An adaptable life cycle assessment model for the environmentally constrained optimization of prospective technology transitions," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1616-1630, October.
    18. Christoph Helbig & Yasushi Kondo & Shinichiro Nakamura, 2022. "Simultaneously tracing the fate of seven metals at a global level with MaTrace‐multi," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 923-936, June.
    19. Junming Zhu, 2020. "Suggested use? On evidence‐based decision‐making in industrial ecology and beyond," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 943-950, October.
    20. Hanspeter Wieland & Manfred Lenzen & Arne Geschke & Jacob Fry & Dominik Wiedenhofer & Nina Eisenmenger & Johannes Schenk & Stefan Giljum, 2022. "The PIOLab: Building global physical input–output tables in a virtual laboratory," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 683-703, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:27:y:2023:i:5:p:1252-1265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.