IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v26y2022i6p1871-1881.html
   My bibliography  Save this article

Improving the estimation of ship emissions using the high‐spatiotemporal resolution wind fields simulated by the Weather Research and Forecast model: A case study in China

Author

Listed:
  • Xinyi Fu
  • Dongsheng Chen
  • Xiurui Guo
  • Jianlei Lang
  • Ying Zhou

Abstract

Ships, sailing in favorable wind or obstructed by wind, will operate with different output power of the engines, and the exhaust emissions will be different even though the ships are sailing at the same ground speed. In this study, the influence of wind was taken into consideration; the ship emission inventory (0.025° × 0.025°) in China of a full year (2014) was reassessed. A speed modification model was employed to figure out the actual output speed of ships by integrating AIS data and the hourly wind. The Weather Research and Forecast (WRF) model was applied to predict the hourly real‐time wind field. The spatial and temporal changes in emissions between the results calculated by the proposed method and our previous study were presented. Overall, when considering the influence of wind, the total ship emissions for the year would increase. In this study, the total estimated emissions of SO2, NOx, PM10, PM2.5, HC, and CO in the area were 1.286 × 106, 2.583 × 106, 2.135× 105, 1.967 × 105, 1.522 × 105, and 3.053 × 105 t(metric tons) in 2014, respectively. Under the influence of wind, the proportion of the regions’ emissions to the total was close to that of the previous study. For SO2 and NOx, emissions presented significant monthly variations. On a monthly timescale, the difference in emissions was more obvious between the results considering and not considering the wind, relative to that on a yearly basis. This study adjusted the method of ship emission estimation, which modified the ship emission inventory over an hourly timescale.

Suggested Citation

  • Xinyi Fu & Dongsheng Chen & Xiurui Guo & Jianlei Lang & Ying Zhou, 2022. "Improving the estimation of ship emissions using the high‐spatiotemporal resolution wind fields simulated by the Weather Research and Forecast model: A case study in China," Journal of Industrial Ecology, Yale University, vol. 26(6), pages 1871-1881, December.
  • Handle: RePEc:bla:inecol:v:26:y:2022:i:6:p:1871-1881
    DOI: 10.1111/jiec.13278
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.13278
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.13278?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Huan Liu & Zhi-Hang Meng & Zhao-Feng Lv & Xiao-Tong Wang & Fan-Yuan Deng & Yang Liu & Yan-Ni Zhang & Meng-Shuang Shi & Qiang Zhang & Ke-Bin He, 2019. "Emissions and health impacts from global shipping embodied in US–China bilateral trade," Nature Sustainability, Nature, vol. 2(11), pages 1027-1033, November.
    2. Hongxun Huang & Chunhui Zhou & Changshi Xiao & Liang Huang & Yuanqiao Wen & Jianxin Wang & Xin Peng, 2020. "Effect of Seasonal Flow Field on Inland Ship Emission Assessment: A Case Study of Ferry," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Xiaomei & Liu, Chan & Zheng, Shuxian & Hu, Han & Tan, Zhanglu, 2023. "Analysis on the evolution characteristics of barite international trade pattern based on complex networks," Resources Policy, Elsevier, vol. 83(C).
    2. Peter Mako & Andrej Dávid & Patrik Böhm & Sorin Savu, 2021. "Sustainable Transport in the Danube Region," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    3. Yiqi Zhang & Yuan Chang & Changbo Wang & Jimmy C. H. Fung & Alexis K. H. Lau, 2022. "Life‐cycle energy and environmental emissions of cargo ships," Journal of Industrial Ecology, Yale University, vol. 26(6), pages 2057-2068, December.
    4. J. Verschuur & E. E. Koks & J. W. Hall, 2022. "Ports’ criticality in international trade and global supply-chains," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Xu, Dongxiao & Li, Yaoguang & Zhao, Mingyuan & Wang, Xinjing & Zhang, Yan & Chen, Bin & Yang, Zhifeng, 2022. "Spatial characteristics analysis of sectoral carbon transfer path in international trade: A comparison of the United States and China," Applied Energy, Elsevier, vol. 323(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:26:y:2022:i:6:p:1871-1881. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.