IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v78y2022i4p1365-1376.html
   My bibliography  Save this article

Integration of survival data from multiple studies

Author

Listed:
  • Steffen Ventz
  • Rahul Mazumder
  • Lorenzo Trippa

Abstract

We introduce a statistical procedure that integrates datasets from multiple biomedical studies to predict patients' survival, based on individual clinical and genomic profiles. The proposed procedure accounts for potential differences in the relation between predictors and outcomes across studies, due to distinct patient populations, treatments and technologies to measure outcomes and biomarkers. These differences are modeled explicitly with study‐specific parameters. We use hierarchical regularization to shrink the study‐specific parameters towards each other and to borrow information across studies. The estimation of the study‐specific parameters utilizes a similarity matrix, which summarizes differences and similarities of the relations between covariates and outcomes across studies. We illustrate the method in a simulation study and using a collection of gene expression datasets in ovarian cancer. We show that the proposed model increases the accuracy of survival predictions compared to alternative meta‐analytic methods.

Suggested Citation

  • Steffen Ventz & Rahul Mazumder & Lorenzo Trippa, 2022. "Integration of survival data from multiple studies," Biometrics, The International Biometric Society, vol. 78(4), pages 1365-1376, December.
  • Handle: RePEc:bla:biomet:v:78:y:2022:i:4:p:1365-1376
    DOI: 10.1111/biom.13517
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13517
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13517?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Debajyoti Sinha, 2003. "A Bayesian justification of Cox's partial likelihood," Biometrika, Biometrika Trust, vol. 90(3), pages 629-641, September.
    3. Xin Cheng & Wenbin Lu & Mengling Liu, 2015. "Identification of homogeneous and heterogeneous variables in pooled cohort studies," Biometrics, The International Biometric Society, vol. 71(2), pages 397-403, June.
    4. Erin M Conlon & Bradley L Postier & Barbara A Methé & Kelly P Nevin & Derek R Lovley, 2012. "A Bayesian Model for Pooling Gene Expression Studies That Incorporates Co-Regulation Information," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Tang & Ling Zhou & Peter X. K. Song, 2019. "Fusion learning algorithm to combine partially heterogeneous Cox models," Computational Statistics, Springer, vol. 34(1), pages 395-414, March.
    2. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    3. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    4. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    5. Emmanouil Androulakis & Christos Koukouvinos & Kalliopi Mylona & Filia Vonta, 2010. "A real survival analysis application via variable selection methods for Cox's proportional hazards model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1399-1406.
    6. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    7. Ying Huang & Shibasish Dasgupta, 2019. "Likelihood-Based Methods for Assessing Principal Surrogate Endpoints in Vaccine Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 504-523, December.
    8. Linton, Oliver & Seo, Myung Hwan & Whang, Yoon-Jae, 2023. "Testing stochastic dominance with many conditioning variables," Journal of Econometrics, Elsevier, vol. 235(2), pages 507-527.
    9. Mert Demirer & Francis X. Diebold & Laura Liu & Kamil Yilmaz, 2018. "Estimating global bank network connectedness," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(1), pages 1-15, January.
    10. Mandys, F., 2021. "Electric vehicles and consumer choices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    11. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    12. William C. Horrace & Hyunseok Jung & Yi Yang, 2023. "The conditional mode in parametric frontier models," Journal of Productivity Analysis, Springer, vol. 60(3), pages 333-343, December.
    13. Ni, Xiao & Zhang, Hao Helen & Zhang, Daowen, 2009. "Automatic model selection for partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2100-2111, October.
    14. David Kohns & Tibor Szendrei, 2021. "Decoupling Shrinkage and Selection for the Bayesian Quantile Regression," Papers 2107.08498, arXiv.org.
    15. Avagyan, Vahe & Alonso Fernández, Andrés Modesto & Nogales, Francisco J., 2015. "D-trace Precision Matrix Estimation Using Adaptive Lasso Penalties," DES - Working Papers. Statistics and Econometrics. WS 21775, Universidad Carlos III de Madrid. Departamento de Estadística.
    16. Diego Vidaurre & Concha Bielza & Pedro Larrañaga, 2013. "A Survey of L1 Regression," International Statistical Review, International Statistical Institute, vol. 81(3), pages 361-387, December.
    17. Xiong, Wei & Wang, Dehui & Deng, Dianliang & Wang, Xinyang & Zhang, Wanying, 2022. "Penalized multiply robust estimation in high-order autoregressive processes with missing explanatory variables," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    18. Juan Antonio Duro & Alejandro Perez‐Laborda & Markus Löw & Sarah Matej & Barbara Plank & Fridolin Krausmann & Dominik Wiedenhofer & Helmut Haberl, 2024. "Spatial patterns of built structures co‐determine nations’ level of resource demand," Journal of Industrial Ecology, Yale University, vol. 28(2), pages 289-302, April.
    19. Yanlin Tang & Xinyuan Song & Zhongyi Zhu, 2015. "Variable selection via composite quantile regression with dependent errors," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(1), pages 1-20, February.
    20. Gustavo Peralta, 2016. "The Nature of Volatility Spillovers across the International Capital Markets," CNMV Working Papers CNMV Working Papers no. 6, CNMV- Spanish Securities Markets Commission - Research and Statistics Department.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:78:y:2022:i:4:p:1365-1376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.