IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v75y2019i1p5-12.html
   My bibliography  Save this article

On assessing binary regression models based on ungrouped data

Author

Listed:
  • Chunling Lu
  • Yuhong Yang

Abstract

Assessing a binary regression model based on ungrouped data is a commonly encountered but very challenging problem. Although tests, such as Hosmer–Lemeshow test and le Cessie–van Houwelingen test, have been devised and widely used in applications, they often have low power in detecting lack of fit and not much theoretical justification has been made on when they can work well. In this article, we propose a new approach based on a cross‐validation voting system to address the problem. In addition to a theoretical guarantee that the probabilities of type I and II errors both converge to zero as the sample size increases for the new method under proper conditions, our simulation results demonstrate that it performs very well.

Suggested Citation

  • Chunling Lu & Yuhong Yang, 2019. "On assessing binary regression models based on ungrouped data," Biometrics, The International Biometric Society, vol. 75(1), pages 5-12, March.
  • Handle: RePEc:bla:biomet:v:75:y:2019:i:1:p:5-12
    DOI: 10.1111/biom.12969
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12969
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12969?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bernard Veldkamp & Wim Linden, 2002. "Multidimensional adaptive testing with constraints on test content," Psychometrika, Springer;The Psychometric Society, vol. 67(4), pages 575-588, December.
    2. J. Fan & M. Farmen & I. Gijbels, 1998. "Local maximum likelihood estimation and inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(3), pages 591-608.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Franke & J.-P. Stockis & J. Tadjuidje-Kamgaing & W. Li, 2011. "Mixtures of nonparametric autoregressions," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 287-303.
    2. Chun Wang & David J. Weiss & Zhuoran Shang, 2019. "Variable-Length Stopping Rules for Multidimensional Computerized Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 749-771, September.
    3. Linton, Oliver & Xiao, Zhijie, 2019. "Efficient estimation of nonparametric regression in the presence of dynamic heteroskedasticity," Journal of Econometrics, Elsevier, vol. 213(2), pages 608-631.
    4. Kohler, Michael & Krzyzak, Adam, 2007. "Asymptotic confidence intervals for Poisson regression," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 1072-1094, May.
    5. Chun Wang, 2015. "On Latent Trait Estimation in Multidimensional Compensatory Item Response Models," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 428-449, June.
    6. Zhang, Wenyang & Li, Degui & Xia, Yingcun, 2015. "Estimation in generalised varying-coefficient models with unspecified link functions," Journal of Econometrics, Elsevier, vol. 187(1), pages 238-255.
    7. Fabian Y.R.P. Bocart & Christian M. Hafner, 2012. "Volatility of price indices for heterogeneous goods," SFB 649 Discussion Papers SFB649DP2012-039, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    8. Gijbels, Irène & Karim, Rezaul & Verhasselt, Anneleen, 2021. "Semiparametric quantile regression using family of quantile-based asymmetric densities," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    9. Wiktor Budziński & Danny Campbell & Mikołaj Czajkowski & Urška Demšar & Nick Hanley, 2018. "Using Geographically Weighted Choice Models to Account for the Spatial Heterogeneity of Preferences," Journal of Agricultural Economics, Wiley Blackwell, vol. 69(3), pages 606-626, September.
    10. Lei Hou & Wei Long & Qi Li, 2019. "Comovement of Home Prices: A Conditional Copula Approach," Annals of Economics and Finance, Society for AEF, vol. 20(1), pages 297-318, May.
    11. Zhao, Xiao Bing & Zhou, Xian & Wang, Jing Long, 2009. "Semiparametric model for prediction of individual claim loss reserving," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 1-8, August.
    12. Chun Wang & Hua-Hua Chang & Keith Boughton, 2011. "Kullback–Leibler Information and Its Applications in Multi-Dimensional Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 76(1), pages 13-39, January.
    13. Lihua Yao, 2012. "Multidimensional CAT Item Selection Methods for Domain Scores and Composite Scores: Theory and Applications," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 495-523, July.
    14. Teuber, T. & Lang, A., 2012. "A new similarity measure for nonlocal filtering in the presence of multiplicative noise," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3821-3842.
    15. Hans R. A. Koster & Jos van Ommeren, 2019. "Place-Based Policies and the Housing Market," The Review of Economics and Statistics, MIT Press, vol. 101(3), pages 400-414, July.
    16. Bach, Philipp & Farbmacher, Helmut & Spindler, Martin, 2018. "Semiparametric count data modeling with an application to health service demand," Econometrics and Statistics, Elsevier, vol. 8(C), pages 125-140.
    17. Centorrino, Samuele & Florens, Jean-Pierre, 2021. "Nonparametric Instrumental Variable Estimation of Binary Response Models with Continuous Endogenous Regressors," Econometrics and Statistics, Elsevier, vol. 17(C), pages 35-63.
    18. Peixin Zhao & Liugen Xue, 2013. "Instrumental variable-based empirical likelihood inferences for varying-coefficient models with error-prone covariates," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(2), pages 380-396, February.
    19. Chen, Bin & Hong, Yongmiao, 2016. "Detecting For Smooth Structural Changes In Garch Models," Econometric Theory, Cambridge University Press, vol. 32(03), pages 740-791, June.
    20. Francesco Bravo, 2020. "Robust estimation and inference for general varying coefficient models with missing observations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 966-988, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:75:y:2019:i:1:p:5-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.