IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v74y2018i3p1104-1111.html
   My bibliography  Save this article

New semiparametric method for predicting high‐cost patients

Author

Listed:
  • Adam Maidman
  • Lan Wang

Abstract

Motivated by the Medical Expenditure Panel Survey containing data from individuals’ medical providers and employers across the United States, we propose a new semiparametric procedure for predicting whether a patient will incur high medical expenditure. Problems of the same nature arise in many other important applications where one would like to predict if a future response occurs at the upper (or lower) tail of the response distribution. The common practice is to artificially dichotomize the response variable and then apply an existing classification method such as binomial regression or a classification tree. We propose a new semiparametric prediction rule to classify whether a future response occurs at the upper tail of the response distribution. The new method can be considered a semiparametric estimator of the Bayes rule for classification and enjoys some nice features. It does not require an artificially dichotomized response and better uses the information contained in the data. It does not require any parametric distributional assumptions and tends to be more robust. It incorporates nonlinear covariate effects and can be adapted to construct a prediction interval and hence provides more information about the future response. We provide an R package plaqr to implement the proposed procedure and demonstrate its performance in Monte Carlo simulations. We illustrate the application of the new method on a subset of the Medical Expenditure Panel Survey data.

Suggested Citation

  • Adam Maidman & Lan Wang, 2018. "New semiparametric method for predicting high‐cost patients," Biometrics, The International Biometric Society, vol. 74(3), pages 1104-1111, September.
  • Handle: RePEc:bla:biomet:v:74:y:2018:i:3:p:1104-1111
    DOI: 10.1111/biom.12834
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12834
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12834?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. He, Xuming & Shi, Peide, 1996. "Bivariate Tensor-Product B-Splines in a Partly Linear Model," Journal of Multivariate Analysis, Elsevier, vol. 58(2), pages 162-181, August.
    2. Werner Ehm & Tilmann Gneiting & Alexander Jordan & Fabian Krüger, 2016. "Of quantiles and expectiles: consistent scoring functions, Choquet representations and forecast rankings," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 505-562, June.
    3. Dimitris Bertsimas & Margrét V. Bjarnadóttir & Michael A. Kane & J. Christian Kryder & Rudra Pandey & Santosh Vempala & Grant Wang, 2008. "Algorithmic Prediction of Health-Care Costs," Operations Research, INFORMS, vol. 56(6), pages 1382-1392, December.
    4. Eun Ryung Lee & Hohsuk Noh & Byeong U. Park, 2014. "Model Selection via Bayesian Information Criterion for Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 216-229, March.
    5. Andrew M. Jones & James Lomas & Nigel Rice, 2015. "Healthcare Cost Regressions: Going Beyond the Mean to Estimate the Full Distribution," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1192-1212, September.
    6. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731.
    7. Xingdong Feng & Xuming He & Jianhua Hu, 2011. "Wild bootstrap for quantile regression," Biometrika, Biometrika Trust, vol. 98(4), pages 995-999.
    8. Xiao‐Hua Zhou & Kevin T. Stroupe & William M. Tierney, 2001. "Regression analysis of health care charges with heteroscedasticity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(3), pages 303-312.
    9. Xuming He, 2002. "Estimation in a semiparametric model for longitudinal data with unspecified dependence structure," Biometrika, Biometrika Trust, vol. 89(3), pages 579-590, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, Seyoung & Lee, Eun Ryung, 2021. "Hypothesis testing of varying coefficients for regional quantiles," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    2. Park, Seyoung & Kim, Hyunjin & Lee, Eun Ryung, 2023. "Regional quantile regression for multiple responses," Computational Statistics & Data Analysis, Elsevier, vol. 188(C).
    3. Ying Lu & Jiang Du & Zhimeng Sun, 2014. "Functional partially linear quantile regression model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(2), pages 317-332, February.
    4. Sherwood, Ben, 2016. "Variable selection for additive partial linear quantile regression with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 206-223.
    5. Uniejewski, Bartosz & Weron, Rafał, 2021. "Regularized quantile regression averaging for probabilistic electricity price forecasting," Energy Economics, Elsevier, vol. 95(C).
    6. Tang Qingguo, 2015. "Robust estimation for spatial semiparametric varying coefficient partially linear regression," Statistical Papers, Springer, vol. 56(4), pages 1137-1161, November.
    7. Sungchul Park & Anirban Basu, 2018. "Alternative evaluation metrics for risk adjustment methods," Health Economics, John Wiley & Sons, Ltd., vol. 27(6), pages 984-1010, June.
    8. Guodong Li & Yang Li & Chih-Ling Tsai, 2015. "Quantile Correlations and Quantile Autoregressive Modeling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 246-261, March.
    9. Conde-Amboage, Mercedes & Sánchez-Sellero, César & González-Manteiga, Wenceslao, 2015. "A lack-of-fit test for quantile regression models with high-dimensional covariates," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 128-138.
    10. Holger Dette & Matthias Guhlich & Natalie Neumeyer, 2015. "Testing for additivity in nonparametric quantile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(3), pages 437-477, June.
    11. Shih-Kang Chao & Katharina Proksch & Holger Dette & Wolfgang Karl Härdle, 2017. "Confidence Corridors for Multivariate Generalized Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 70-85, January.
    12. Tang Qingguo, 2009. "Asymptotic normality of M-estimators in a semiparametric model with longitudinal data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 69(1), pages 55-67, January.
    13. Battagliola, Maria Laura & Sørensen, Helle & Tolver, Anders & Staicu, Ana-Maria, 2022. "A bias-adjusted estimator in quantile regression for clustered data," Econometrics and Statistics, Elsevier, vol. 23(C), pages 165-186.
    14. Graciela Boente & Daniela Rodriguez & Pablo Vena, 2020. "Robust estimators in a generalized partly linear regression model under monotony constraints," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 50-89, March.
    15. Yujing Shao & Lei Wang, 2022. "Generalized partial linear models with nonignorable dropouts," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(2), pages 223-252, February.
    16. Qin, Guoyou & Zhang, Jiajia & Zhu, Zhongyi, 2016. "Simultaneous mean and covariance estimation of partially linear models for longitudinal data with missing responses and covariate measurement error," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 24-39.
    17. Fengler, Matthias R. & Hin, Lin-Yee, 2015. "A simple and general approach to fitting the discount curve under no-arbitrage constraints," Finance Research Letters, Elsevier, vol. 15(C), pages 78-84.
    18. He, Xuming & Pan, Xiaoou & Tan, Kean Ming & Zhou, Wen-Xin, 2023. "Smoothed quantile regression with large-scale inference," Journal of Econometrics, Elsevier, vol. 232(2), pages 367-388.
    19. Lin, Fangzheng & Tang, Yanlin & Zhu, Zhongyi, 2020. "Weighted quantile regression in varying-coefficient model with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    20. Chenxi Li & N. Maritza Dowling & Rick Chappell, 2015. "Quantile regression with a change‐point model for longitudinal data: An application to the study of cognitive changes in preclinical alzheimer's disease," Biometrics, The International Biometric Society, vol. 71(3), pages 625-635, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:74:y:2018:i:3:p:1104-1111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.