IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v72y2016i4p1066-1077.html
   My bibliography  Save this article

Accounting for interactions and complex inter‐subject dependency in estimating treatment effect in cluster‐randomized trials with missing outcomes

Author

Listed:
  • Melanie Prague
  • Rui Wang
  • Alisa Stephens
  • Eric Tchetgen Tchetgen
  • Victor DeGruttola

Abstract

Semi‐parametric methods are often used for the estimation of intervention effects on correlated outcomes in cluster‐randomized trials (CRTs). When outcomes are missing at random (MAR), Inverse Probability Weighted (IPW) methods incorporating baseline covariates can be used to deal with informative missingness. Also, augmented generalized estimating equations (AUG) correct for imbalance in baseline covariates but need to be extended for MAR outcomes. However, in the presence of interactions between treatment and baseline covariates, neither method alone produces consistent estimates for the marginal treatment effect if the model for interaction is not correctly specified. We propose an AUG–IPW estimator that weights by the inverse of the probability of being a complete case and allows different outcome models in each intervention arm. This estimator is doubly robust (DR); it gives correct estimates whether the missing data process or the outcome model is correctly specified. We consider the problem of covariate interference which arises when the outcome of an individual may depend on covariates of other individuals. When interfering covariates are not modeled, the DR property prevents bias as long as covariate interference is not present simultaneously for the outcome and the missingness. An R package is developed implementing the proposed method. An extensive simulation study and an application to a CRT of HIV risk reduction‐intervention in South Africa illustrate the method.

Suggested Citation

  • Melanie Prague & Rui Wang & Alisa Stephens & Eric Tchetgen Tchetgen & Victor DeGruttola, 2016. "Accounting for interactions and complex inter‐subject dependency in estimating treatment effect in cluster‐randomized trials with missing outcomes," Biometrics, The International Biometric Society, vol. 72(4), pages 1066-1077, December.
  • Handle: RePEc:bla:biomet:v:72:y:2016:i:4:p:1066-1077
    DOI: 10.1111/biom.12519
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12519
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12519?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jemmott, J.B. & Jemmott, L.S. & O'Leary, A. & Ngwane, Z. & Icard, L.D. & Heeren, G.A. & Mtose, X. & Carty, C., 2014. "Cluster-randomized controlled trial of an HIV/sexually transmitted infection risk-reduction intervention for South African men," American Journal of Public Health, American Public Health Association, vol. 104(3), pages 467-473.
    2. Min Zhang & Anastasios A. Tsiatis & Marie Davidian, 2008. "Improving Efficiency of Inferences in Randomized Clinical Trials Using Auxiliary Covariates," Biometrics, The International Biometric Society, vol. 64(3), pages 707-715, September.
    3. Rosenbaum, Paul R., 2007. "Interference Between Units in Randomized Experiments," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 191-200, March.
    4. Glynn, Adam N. & Quinn, Kevin M., 2010. "An Introduction to the Augmented Inverse Propensity Weighted Estimator," Political Analysis, Cambridge University Press, vol. 18(1), pages 36-56, January.
    5. Stijn Vansteelandt, 2007. "On Confounding, Prediction and Efficiency in the Analysis of Longitudinal and Cross‐sectional Clustered Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(3), pages 478-498, September.
    6. Beunckens, Caroline & Sotto, Cristina & Molenberghs, Geert, 2008. "A simulation study comparing weighted estimating equations with multiple imputation based estimating equations for longitudinal binary data," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1533-1548, January.
    7. Lan Liu & Michael G. Hudgens, 2014. "Large Sample Randomization Inference of Causal Effects in the Presence of Interference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 288-301, March.
    8. Brumback, Babette A. & Dailey, Amy B. & Brumback, Lyndia C. & Livingston, Melvin D. & He, Zhulin, 2010. "Adjusting for confounding by cluster using generalized linear mixed models," Statistics & Probability Letters, Elsevier, vol. 80(21-22), pages 1650-1654, November.
    9. Jesse A. Berlin & Stephen E. Kimmel & Thomas R. Ten Have & Mary D. Sammel, 1999. "An Empirical Comparison of Several Clustered Data Approaches Under Confounding Due to Cluster Effects in the Analysis of Complications of Coronary Angioplasty," Biometrics, The International Biometric Society, vol. 55(2), pages 470-476, June.
    10. Ying Huang & Brian Leroux, 2011. "Informative Cluster Sizes for Subcluster-Level Covariates and Weighted Generalized Estimating Equations," Biometrics, The International Biometric Society, vol. 67(3), pages 843-851, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paola Berchialla & Veronica Sciannameo & Sara Urru & Corrado Lanera & Danila Azzolina & Dario Gregori & Ileana Baldi, 2021. "Adjustment for Baseline Covariates to Increase Efficiency in RCTs with Binary Endpoint: A Comparison of Bayesian and Frequentist Approaches," IJERPH, MDPI, vol. 18(15), pages 1-9, July.
    2. Zhaonan Qu & Ruoxuan Xiong & Jizhou Liu & Guido Imbens, 2021. "Efficient Treatment Effect Estimation in Observational Studies under Heterogeneous Partial Interference," Papers 2107.12420, arXiv.org, revised Jun 2022.
    3. David Choi, 2017. "Estimation of Monotone Treatment Effects in Network Experiments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1147-1155, July.
    4. Shaun R. Seaman & Menelaos Pavlou & Andrew J. Copas, 2014. "Methods for observed-cluster inference when cluster size is informative: A review and clarifications," Biometrics, The International Biometric Society, vol. 70(2), pages 449-456, June.
    5. Elizabeth L. Ogburn & Ilya Shpitser & Youjin Lee, 2020. "Causal inference, social networks and chain graphs," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1659-1676, October.
    6. Clarke, Damian, 2017. "Estimating Difference-in-Differences in the Presence of Spillovers," MPRA Paper 81604, University Library of Munich, Germany.
    7. Karlsson, Maria & Lundin, Mathias, 2016. "On statistical methods for labor market evaluation under interference between units," Working Paper Series 2016:24, IFAU - Institute for Evaluation of Labour Market and Education Policy.
    8. Rigdon, Joseph & Hudgens, Michael G., 2015. "Exact confidence intervals in the presence of interference," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 130-135.
    9. Gonzalo Vazquez-Bare, 2017. "Identification and Estimation of Spillover Effects in Randomized Experiments," Papers 1711.02745, arXiv.org, revised Jan 2022.
    10. Noemi Kreif & Richard Grieve & Rosalba Radice & Zia Sadique & Roland Ramsahai & Jasjeet S. Sekhon, 2012. "Methods for Estimating Subgroup Effects in Cost-Effectiveness Analyses That Use Observational Data," Medical Decision Making, , vol. 32(6), pages 750-763, November.
    11. Tiziano Arduini & Eleonora Patacchini & Edoardo Rainone, 2020. "Treatment Effects With Heterogeneous Externalities," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(4), pages 826-838, October.
    12. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    13. Yi Zhang & Kosuke Imai, 2023. "Individualized Policy Evaluation and Learning under Clustered Network Interference," Papers 2311.02467, arXiv.org, revised Feb 2024.
    14. Sallin, Aurelién, 2021. "Estimating returns to special education: combining machine learning and text analysis to address confounding," Economics Working Paper Series 2109, University of St. Gallen, School of Economics and Political Science.
    15. Michael L. Anderson & Fangwen Lu, 2017. "Learning to Manage and Managing to Learn: The Effects of Student Leadership Service," Management Science, INFORMS, vol. 63(10), pages 3246-3261, October.
    16. Giovanni Cerulli, 2014. "ntreatreg: a Stata module for estimation of treatment effects in the presence of neighborhood interactions," United Kingdom Stata Users' Group Meetings 2014 15, Stata Users Group.
    17. Oyenubi, Adeola & Kollamparambil, Umakrishnan, 2023. "Does noncompliance with COVID-19 regulations impact the depressive symptoms of others?," Economic Modelling, Elsevier, vol. 120(C).
    18. Eric C. Brown & John W. Graham & J. David Hawkins & Michael W. Arthur & Megan M. Baldwin & Sabrina Oesterle & John S. Briney & Richard F. Catalano & Robert D. Abbott, 2009. "Design and Analysis of the Community Youth Development Study Longitudinal Cohort Sample," Evaluation Review, , vol. 33(4), pages 311-334, August.
    19. Koch, Bernard & Sainburg, Tim & Geraldo, Pablo & JIANG, SONG & Sun, Yizhou & Foster, Jacob G., 2021. "Deep Learning of Potential Outcomes," SocArXiv aeszf, Center for Open Science.
    20. Paul Frédéric Blanche & Anders Holt & Thomas Scheike, 2023. "On logistic regression with right censored data, with or without competing risks, and its use for estimating treatment effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 441-482, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:72:y:2016:i:4:p:1066-1077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.