IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v72y2016i1p125-135.html
   My bibliography  Save this article

Flexible behavioral capture–recapture modeling

Author

Listed:
  • Danilo Alunni Fegatelli
  • Luca Tardella

Abstract

type="main" xml:lang="en"> We develop alternative strategies for building and fitting parametric capture–recapture models for closed populations which can be used to address a better understanding of behavioral patterns. In the perspective of transition models, we first rely on a conditional probability parameterization. A large subset of standard capture–recapture models can be regarded as a suitable partitioning in equivalence classes of the full set of conditional probability parameters. We exploit a regression approach combined with the use of new suitable summaries of the conditioning binary partial capture histories as a device for enlarging the scope of behavioral models and also exploring the range of all possible partitions. We show how one can easily find unconditional MLE of such models within a generalized linear model framework. We illustrate the potential of our approach with the analysis of some known datasets and a simulation study.

Suggested Citation

  • Danilo Alunni Fegatelli & Luca Tardella, 2016. "Flexible behavioral capture–recapture modeling," Biometrics, The International Biometric Society, vol. 72(1), pages 125-135, March.
  • Handle: RePEc:bla:biomet:v:72:y:2016:i:1:p:125-135
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Andrew Royle, 2009. "Analysis of Capture–Recapture Models with Individual Covariates Using Data Augmentation," Biometrics, The International Biometric Society, vol. 65(1), pages 267-274, March.
    2. Robert M. Dorazio & J. Andrew Royle, 2003. "Mixture Models for Estimating the Size of a Closed Population When Capture Rates Vary among Individuals," Biometrics, The International Biometric Society, vol. 59(2), pages 351-364, June.
    3. Bartolucci, Francesco & Forcina, Antonio, 2006. "A Class of Latent Marginal Models for CaptureRecapture Data With Continuous Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 786-794, June.
    4. A. Farcomeni, 2016. "A general class of recapture models based on the conditional capture probabilities," Biometrics, The International Biometric Society, vol. 72(1), pages 116-124, March.
    5. A. Farcomeni, 2011. "Recapture models under equality constraints for the conditional capture probabilities," Biometrika, Biometrika Trust, vol. 98(1), pages 237-242.
    6. Francesco Bartolucci & Fulvia Pennoni, 2007. "A Class of Latent Markov Models for Capture–Recapture Data Allowing for Time, Heterogeneity, and Behavior Effects," Biometrics, The International Biometric Society, vol. 63(2), pages 568-578, June.
    7. Danilo Fegatelli & Luca Tardella, 2013. "Improved inference on capture recapture models with behavioural effects," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(1), pages 45-66, March.
    8. Grün, Bettina & Leisch, Friedrich, 2008. "FlexMix Version 2: Finite Mixtures with Concomitant Variables and Varying and Constant Parameters," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i04).
    9. Brent A. Coull & Alan Agresti, 1999. "The Use of Mixed Logit Models to Reflect Heterogeneity in Capture-Recapture Studies," Biometrics, The International Biometric Society, vol. 55(1), pages 294-301, March.
    10. E. A. Catchpole & B. J. T. Morgan & T. Coulson, 2004. "Conditional methodology for individual case history data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 53(1), pages 123-131, January.
    11. Hsin-Chou Yang & Anne Chao, 2005. "Modeling Animals' Behavioral Response by Markov Chain Models for Capture–Recapture Experiments," Biometrics, The International Biometric Society, vol. 61(4), pages 1010-1017, December.
    12. Anne Chao & Wenten Chu & Chiu-Hsieh Hsu, 2000. "Capture–Recapture When Time and Behavioral Response Affect Capture Probabilities," Biometrics, The International Biometric Society, vol. 56(2), pages 427-433, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linda Altieri & Alessio Farcomeni & Danilo Alunni Fegatelli, 2023. "Continuous time‐interaction processes for population size estimation, with an application to drug dealing in Italy," Biometrics, The International Biometric Society, vol. 79(2), pages 1254-1267, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessio Farcomeni, 2015. "Latent class recapture models with flexible behavioural response," Statistica, Department of Statistics, University of Bologna, vol. 75(1), pages 5-17.
    2. Danilo Fegatelli & Luca Tardella, 2013. "Improved inference on capture recapture models with behavioural effects," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(1), pages 45-66, March.
    3. Linda Altieri & Alessio Farcomeni & Danilo Alunni Fegatelli, 2023. "Continuous time‐interaction processes for population size estimation, with an application to drug dealing in Italy," Biometrics, The International Biometric Society, vol. 79(2), pages 1254-1267, June.
    4. J. Andrew Royle, 2009. "Analysis of Capture–Recapture Models with Individual Covariates Using Data Augmentation," Biometrics, The International Biometric Society, vol. 65(1), pages 267-274, March.
    5. Yuzi Zhang & Howard H. Chang & Qu Cheng & Philip A. Collender & Ting Li & Jinge He & Justin V. Remais, 2023. "A hierarchical model for analyzing multisite individual‐level disease surveillance data from multiple systems," Biometrics, The International Biometric Society, vol. 79(2), pages 1507-1519, June.
    6. Francesco Bartolucci & Fulvia Pennoni, 2007. "A Class of Latent Markov Models for Capture–Recapture Data Allowing for Time, Heterogeneity, and Behavior Effects," Biometrics, The International Biometric Society, vol. 63(2), pages 568-578, June.
    7. Francesco Bartolucci & Monia Lupparelli, 2008. "Focused Information Criterion for Capture–Recapture Models for Closed Populations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 629-649, December.
    8. Riki Herliansyah & Ruth King & Stuart King, 2022. "Laplace Approximations for Capture–Recapture Models in the Presence of Individual Heterogeneity," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 401-418, September.
    9. Orasa Anan & Dankmar Böhning & Antonello Maruotti, 2017. "Population size estimation and heterogeneity in capture–recapture data: a linear regression estimator based on the Conway–Maxwell–Poisson distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(1), pages 49-79, March.
    10. Mevin B. Hooten & Michael R. Schwob & Devin S. Johnson & Jacob S. Ivan, 2023. "Multistage hierarchical capture–recapture models," Environmetrics, John Wiley & Sons, Ltd., vol. 34(6), September.
    11. Jennifer B Smith & Bryan S Stevens & Dwayne R Etter & David M Williams, 2020. "Performance of spatial capture-recapture models with repurposed data: Assessing estimator robustness for retrospective applications," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-16, August.
    12. Louis-Paul Rivest & Sophie Baillargeon, 2007. "Applications and Extensions of Chao's Moment Estimator for the Size of a Closed Population," Biometrics, The International Biometric Society, vol. 63(4), pages 999-1006, December.
    13. J. Andrew Royle, 2006. "Site Occupancy Models with Heterogeneous Detection Probabilities," Biometrics, The International Biometric Society, vol. 62(1), pages 97-102, March.
    14. Di Consiglio Loredana & Tuoto Tiziana, 2015. "Coverage Evaluation on Probabilistically Linked Data," Journal of Official Statistics, Sciendo, vol. 31(3), pages 415-429, September.
    15. B. J. T. Morgan & M. S. Ridout, 2008. "A new mixture model for capture heterogeneity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 57(4), pages 433-446, September.
    16. William A. Link, 2003. "Nonidentifiability of Population Size from Capture-Recapture Data with Heterogeneous Detection Probabilities," Biometrics, The International Biometric Society, vol. 59(4), pages 1123-1130, December.
    17. Thandrayen, Joanne & Wang, Yan, 2009. "A latent variable regression model for capture-recapture data," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2740-2746, May.
    18. J. Andrew Royle, 2008. "Modeling Individual Effects in the Cormack–Jolly–Seber Model: A State–Space Formulation," Biometrics, The International Biometric Society, vol. 64(2), pages 364-370, June.
    19. Jakub Stoklosa & Wen-Han Hwang & Sheng-Hai Wu & Richard Huggins, 2011. "Heterogeneous Capture–Recapture Models with Covariates: A Partial Likelihood Approach for Closed Populations," Biometrics, The International Biometric Society, vol. 67(4), pages 1659-1665, December.
    20. Fodé Tounkara & Louis‐Paul Rivest, 2015. "Mixture regression models for closed population capture–recapture data," Biometrics, The International Biometric Society, vol. 71(3), pages 721-730, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:72:y:2016:i:1:p:125-135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.