IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v65y2009i3p815-821.html
   My bibliography  Save this article

Flexible Designs for Genomewide Association Studies

Author

Listed:
  • André Scherag
  • Johannes Hebebrand
  • Helmut Schäfer
  • Hans-Helge Müller

Abstract

No abstract is available for this item.

Suggested Citation

  • André Scherag & Johannes Hebebrand & Helmut Schäfer & Hans-Helge Müller, 2009. "Flexible Designs for Genomewide Association Studies," Biometrics, The International Biometric Society, vol. 65(3), pages 815-821, September.
  • Handle: RePEc:bla:biomet:v:65:y:2009:i:3:p:815-821
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2008.01174.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jaya M. Satagopan & E. S. Venkatraman & Colin B. Begg, 2004. "Two-Stage Designs for Gene–Disease Association Studies with Sample Size Constraints," Biometrics, The International Biometric Society, vol. 60(3), pages 589-597, September.
    2. Anastasios A. Tsiatis, 2003. "On the inefficiency of the adaptive design for monitoring clinical trials," Biometrika, Biometrika Trust, vol. 90(2), pages 367-378, June.
    3. Christopher Jennison & Bruce W. Turnbull, 2006. "Adaptive and nonadaptive group sequential tests," Biometrika, Biometrika Trust, vol. 93(1), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stephen A Stanhope & Andrew D Skol, 2012. "Improved Minimum Cost and Maximum Power Two Stage Genome-Wide Association Study Designs," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-10, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher Jennison & Bruce W. Turnbull, 2006. "Discussions," Biometrics, The International Biometric Society, vol. 62(3), pages 670-673, September.
    2. Duncan C. Thomas, 2005. "Discussion on "Statistical Issues Arising in the Women's Health Initiative"," Biometrics, The International Biometric Society, vol. 61(4), pages 930-933, December.
    3. P. Bauer, 2006. "Discussions," Biometrics, The International Biometric Society, vol. 62(3), pages 676-678, September.
    4. Jingjing Chen, 2019. "A Note of Adaptive Design in Clinical Trials," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 9(5), pages 107-111, August.
    5. Jay Bartroff & Jinlin Song, 2016. "A Rejection Principle for Sequential Tests of Multiple Hypotheses Controlling Familywise Error Rates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 3-19, March.
    6. Minjung Kwak & Jungnam Joo & Gang Zheng, 2009. "A Robust Test for Two-Stage Design in Genome-Wide Association Studies," Biometrics, The International Biometric Society, vol. 65(4), pages 1288-1295, December.
    7. Chambaz Antoine & van der Laan Mark J., 2011. "Targeting the Optimal Design in Randomized Clinical Trials with Binary Outcomes and No Covariate: Theoretical Study," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-32, January.
    8. Sato Yasunori & Laird Nan & Suganami Hideki & Hamada Chikuma & Niki Naoto & Yoshimura Isao & Yoshida Teruhiko, 2009. "Statistical Screening Method for Genetic Factors Influencing Susceptibility to Common Diseases in a Two-Stage Genome-Wide Association Study," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-21, November.
    9. T. Tony Cai & Wenguang Sun, 2017. "Optimal screening and discovery of sparse signals with applications to multistage high throughput studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 197-223, January.
    10. Michael A. Proschan, 2006. "Discussions," Biometrics, The International Biometric Society, vol. 62(3), pages 674-676, September.
    11. Carl-Fredrik Burman & Christian Sonesson, 2006. "Rejoinder," Biometrics, The International Biometric Society, vol. 62(3), pages 680-683, September.
    12. Gregory P. Levin & Sarah C. Emerson & Scott S. Emerson, 2014. "An evaluation of inferential procedures for adaptive clinical trial designs with pre-specified rules for modifying the sample size," Biometrics, The International Biometric Society, vol. 70(3), pages 556-567, September.
    13. Dejian Lai, 2010. "Group sequential tests under fractional Brownian motion in monitoring clinical trials," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(2), pages 277-286, June.
    14. Steibel, Juan P. & Rosa, Guilherme J.M. & Tempelman, Robert J., 2009. "Optimizing design of two-stage experiments for transcriptional profiling," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1639-1649, March.
    15. Carl-Fredrik Burman & Christian Sonesson, 2006. "Are Flexible Designs Sound?," Biometrics, The International Biometric Society, vol. 62(3), pages 664-669, September.
    16. Lingyun Liu & Sam Hsiao & Cyrus R. Mehta, 2018. "Efficiency Considerations for Group Sequential Designs with Adaptive Unblinded Sample Size Re-assessment," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(2), pages 405-419, August.
    17. Oke Gerke & Sören Möller, 2021. "Bland–Altman Limits of Agreement from a Bayesian and Frequentist Perspective," Stats, MDPI, vol. 4(4), pages 1-11, December.
    18. Sergey Tarima & Nancy Flournoy, 2022. "Most powerful test sequences with early stopping options," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(4), pages 491-513, May.
    19. József Bukszár & Edwin J. C. G. van den Oord, 2006. "Optimization of Two-Stage Genetic Designs Where Data Are Combined Using an Accurate and Efficient Approximation for Pearson's Statistic," Biometrics, The International Biometric Society, vol. 62(4), pages 1132-1137, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:65:y:2009:i:3:p:815-821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.