IDEAS home Printed from https://ideas.repec.org/a/bes/jnlasa/v105i492y2010p1541-1553.html
   My bibliography  Save this article

Variable Selection Using Adaptive Nonlinear Interaction Structures in High Dimensions

Author

Listed:
  • Radchenko, Peter
  • James, Gareth M.

Abstract

No abstract is available for this item.

Suggested Citation

  • Radchenko, Peter & James, Gareth M., 2010. "Variable Selection Using Adaptive Nonlinear Interaction Structures in High Dimensions," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1541-1553.
  • Handle: RePEc:bes:jnlasa:v:105:i:492:y:2010:p:1541-1553
    as

    Download full text from publisher

    File URL: http://pubs.amstat.org/doi/abs/10.1198/jasa.2010.tm10130
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, Pang & Cheng, Guang & Liang, Hua, 2012. "Semiparametric regression models with additive nonparametric components and high dimensional parametric components," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2006-2017.
    2. Giordano, Francesco & Parrella, Maria Lucia, 2016. "Bias-corrected inference for multivariate nonparametric regression: Model selection and oracle property," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 71-93.
    3. Li Yun & O’Connor George T. & Dupuis Josée & Kolaczyk Eric, 2015. "Modeling gene-covariate interactions in sparse regression with group structure for genome-wide association studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(3), pages 265-277, June.
    4. Diego Vidaurre & Concha Bielza & Pedro Larrañaga, 2013. "A Survey of L1 Regression," International Statistical Review, International Statistical Institute, vol. 81(3), pages 361-387, December.
    5. Zaili Fang & Inyoung Kim & Patrick Schaumont, 2016. "Flexible variable selection for recovering sparsity in nonadditive nonparametric models," Biometrics, The International Biometric Society, vol. 72(4), pages 1155-1163, December.
    6. Dewei Zhang & Yin Liu & Sam Davanloo Tajbakhsh, 2022. "A First-Order Optimization Algorithm for Statistical Learning with Hierarchical Sparsity Structure," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1126-1140, March.
    7. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    8. Yawei He & Zehua Chen, 2016. "The EBIC and a sequential procedure for feature selection in interactive linear models with high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(1), pages 155-180, February.
    9. Gregor Stiglic & Petra Povalej Brzan & Nino Fijacko & Fei Wang & Boris Delibasic & Alexandros Kalousis & Zoran Obradovic, 2015. "Comprehensible Predictive Modeling Using Regularized Logistic Regression and Comorbidity Based Features," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-11, December.
    10. Wang, Lu & Shen, Jincheng & Thall, Peter F., 2014. "A modified adaptive Lasso for identifying interactions in the Cox model with the heredity constraint," Statistics & Probability Letters, Elsevier, vol. 93(C), pages 126-133.
    11. Feng Li & Yajie Li & Sanying Feng, 2021. "Estimation for Varying Coefficient Models with Hierarchical Structure," Mathematics, MDPI, vol. 9(2), pages 1-18, January.
    12. Radchenko, Peter, 2015. "High dimensional single index models," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 266-282.
    13. Bhatnagar, Sahir R. & Lu, Tianyuan & Lovato, Amanda & Olds, David L. & Kobor, Michael S. & Meaney, Michael J. & O'Donnell, Kieran & Yang, Archer Y. & Greenwood, Celia M.T., 2023. "A sparse additive model for high-dimensional interactions with an exposure variable," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    14. Fabian Scheipl & Thomas Kneib & Ludwig Fahrmeir, 2013. "Penalized likelihood and Bayesian function selection in regression models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 349-385, October.
    15. Yi Liu & Veronika Ročková & Yuexi Wang, 2021. "Variable selection with ABC Bayesian forests," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 453-481, July.
    16. Yao Dong & He Jiang, 2018. "A Two-Stage Regularization Method for Variable Selection and Forecasting in High-Order Interaction Model," Complexity, Hindawi, vol. 2018, pages 1-12, November.
    17. Francesco Giordano & Soumendra Nath Lahiri & Maria Lucia Parrella, 2014. "GRID for model structure discovering in high dimensional regression," Working Papers 3_231, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.
    18. Xi Wu & Shifeng Xiong & Weiyan Mu, 2023. "An Ensemble Method for Feature Screening," Mathematics, MDPI, vol. 11(2), pages 1-14, January.
    19. Jonathan Boss & Alexander Rix & Yin‐Hsiu Chen & Naveen N. Narisetty & Zhenke Wu & Kelly K. Ferguson & Thomas F. McElrath & John D. Meeker & Bhramar Mukherjee, 2021. "A hierarchical integrative group least absolute shrinkage and selection operator for analyzing environmental mixtures," Environmetrics, John Wiley & Sons, Ltd., vol. 32(8), December.
    20. Han Li & Yashu Liu & Pinghua Gong & Changshui Zhang & Jieping Ye & for the Alzheimers Disease Neuroimaging Initiative, 2014. "Hierarchical Interactions Model for Predicting Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD) Conversion," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-11, January.
    21. Oliver J. Rutz & Garrett P. Sonnier, 2019. "VANISH regularization for generalized linear models," Quantitative Marketing and Economics (QME), Springer, vol. 17(4), pages 415-437, December.
    22. Jacob Bien & Florentina Bunea & Luo Xiao, 2016. "Convex Banding of the Covariance Matrix," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 834-845, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:105:i:492:y:2010:p:1541-1553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.