IDEAS home Printed from https://ideas.repec.org/a/arh/jpopec/v3y2019i4p86-96.html
   My bibliography  Save this article

Dynamics of modal age at death in 1959−2014 in Russia

Author

Listed:
  • Mikhail A. Maksimov

    (Lomonosov Moscow State University, Moscow, Russia)

Abstract

The aim of this paper is to determine the trends of the main indicators of life expectancy in Russia in the 1950s to 2000s. For this purpose, life tables for Russia (former — RSFSR) from 1959 to 2014 for one-year age intervals were analyzed. The main indicators under review are the modal age at death and the standard deviation of life expectancy from the modal value for all ages and the mode. As a result, it is concluded that in Russia the modal age at death and the indicator of life expectancy have stagnated over the past 60 years, and definite trends can be traced only in short periods of time, namely after 2009 when all basic life expectancy indicators were steadily increasing. Life expectancy is far behind those of the developed countries by about half a century.

Suggested Citation

  • Mikhail A. Maksimov, 2019. "Dynamics of modal age at death in 1959−2014 in Russia," Population and Economics, ARPHA Platform, vol. 3(4), pages 86-96, December.
  • Handle: RePEc:arh:jpopec:v:3:y:2019:i:4:p:86-96
    DOI: 10.3897/popecon.3.e49651
    as

    Download full text from publisher

    File URL: https://populationandeconomics.pensoft.net/article/49651/
    Download Restriction: no

    File URL: https://libkey.io/10.3897/popecon.3.e49651?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. Roger Thatcher & Siu Lan Karen Cheung & Shiro Horiuchi & Jean-Marie Robine, 2010. "The compression of deaths above the mode," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 22(17), pages 505-538.
    2. repec:cai:popine:popu_p2001_13n1_0171 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ediev, Dalkhat M. & Sanderson, Warren C. & Scherbov, Sergei, 2019. "The inverse relationship between life expectancy-induced changes in the old-age dependency ratio and the prospective old-age dependency ratio," Theoretical Population Biology, Elsevier, vol. 125(C), pages 1-10.
    2. Viorela Diaconu & Nadine Ouellette & Robert Bourbeau, 2020. "Modal lifespan and disparity at older ages by leading causes of death: a Canada-U.S. comparison," Journal of Population Research, Springer, vol. 37(4), pages 323-344, December.
    3. Jean-Marie Robine & Siu Lan Karen Cheung & Shiro Horiuchi, 2010. "Arthur Roger Thatcher's contributions to longevity research," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 22(18), pages 539-548.
    4. Viorela Diaconu & Nadine Ouellette & Carlo Giovanni Camarda & Robert Bourbeau, 2016. "Insight on 'typical' longevity: An analysis of the modal lifespan by leading causes of death in Canada," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 35(17), pages 471-504.
    5. Matthias Börger & Martin Genz & Jochen Ruß, 2018. "Extension, Compression, and Beyond: A Unique Classification System for Mortality Evolution Patterns," Demography, Springer;Population Association of America (PAA), vol. 55(4), pages 1343-1361, August.
    6. Magdalena Muszyńska, 2012. "Zróżnicowanie długości trwania życia w Polsce," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 28, pages 85-96.
    7. Ainhoa-Elena Léger & Stefano Mazzuco, 2021. "What Can We Learn from the Functional Clustering of Mortality Data? An Application to the Human Mortality Database," European Journal of Population, Springer;European Association for Population Studies, vol. 37(4), pages 769-798, November.
    8. Dustin Brown & Mark Hayward & Jennifer Montez & Robert Hummer & Chi-Tsun Chiu & Mira Hidajat, 2012. "The Significance of Education for Mortality Compression in the United States," Demography, Springer;Population Association of America (PAA), vol. 49(3), pages 819-840, August.
    9. Viorela Diaconu & Alyson van Raalte & Pekka Martikainen, 2022. "Why we should monitor disparities in old-age mortality with the modal age at death," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-13, February.
    10. Alyson Raalte & Hal Caswell, 2013. "Perturbation Analysis of Indices of Lifespan Variability," Demography, Springer;Population Association of America (PAA), vol. 50(5), pages 1615-1640, October.
    11. Alyson A. van Raalte & Pekka Martikainen & Mikko Myrskylä, 2012. "Lifespan variation by occupational class: compression or stagnation over time?," MPIDR Working Papers WP-2012-010, Max Planck Institute for Demographic Research, Rostock, Germany.
    12. Trifon Missov & Adam Lenart & Laszlo Nemeth & Vladimir Canudas-Romo & James W. Vaupel, 2015. "The Gompertz force of mortality in terms of the modal age at death," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 32(36), pages 1031-1048.
    13. Alberto Palloni & Laeticia Souza, 2013. "The fragility of the future and the tug of the past," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(21), pages 543-578.
    14. Konstantinos N. Zafeiris, 2023. "Greece since the 1960s: the mortality transition revisited: a joinpoint regression analysis," Journal of Population Research, Springer, vol. 40(1), pages 1-31, March.
    15. Isaac Sasson, 2016. "Trends in Life Expectancy and Lifespan Variation by Educational Attainment: United States, 1990–2010," Demography, Springer;Population Association of America (PAA), vol. 53(2), pages 269-293, April.
    16. Basellini, Ugofilippo & Kjærgaard, Søren & Camarda, Carlo Giovanni, 2020. "An age-at-death distribution approach to forecast cohort mortality," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 129-143.

    More about this item

    Keywords

    Keywords life expectancy; modal age at death; mortality.;
    All these keywords.

    JEL classification:

    • J0 - Labor and Demographic Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arh:jpopec:v:3:y:2019:i:4:p:86-96. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Teodor Georgiev (email available below). General contact details of provider: https://populationandeconomics.pensoft.net/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.