IDEAS home Printed from https://ideas.repec.org/a/apb/jaterr/2019p142-150.html
   My bibliography  Save this article

Comparison of parameter fitting on the model of irradiation effects on bystander cells between Nelder-Mead simplex and particle swarm optimization

Author

Listed:
  • Fuaada Mohd Siam

    (Department of Mathematical Sciences, Universiti Teknologi, Johor, Malaysia)

  • Muhamad Hanis Nasir

    (Department of Mathematical Sciences, Universiti Teknologi, Johor, Malaysia)

Abstract

Study on the biological effects of irradiation has become important nowadays. Mathematical modeling is one of the interests among researchers due to its ability to explain the dynamics process of the irradiation. Some physical parameters cannot be evaluated from the empirical data. Therefore, the aim of this work is to estimate parameters of the model of irradiation effects on bystander cells using optimization approaches. We employ two algorithms: Nelder-Mead Simplex (NMS) (which is the local optimizer) and Particle Swarm (which is the global optimizer). We compare the efficiency of two optimization algorithms in optimizing the parameter values of the model. 50 sets of parameters have been estimated and all sets are able to match the model simulation and the experimental data with the least Sum-Squared Error (SSE). The graph of model simulation using a set of the estimated parameters from both optimization algorithms shows a good fit with the experimental data. The overall results indicate that NSM is better than Particle Swarm (PS) optimization in the aspect of time computing, while there is no significant difference in the score of SSE and converging iteration to the least SSE.

Suggested Citation

  • Fuaada Mohd Siam & Muhamad Hanis Nasir, 2019. "Comparison of parameter fitting on the model of irradiation effects on bystander cells between Nelder-Mead simplex and particle swarm optimization," Journal of Advances in Technology and Engineering Research, A/Professor Akbar A. Khatibi, vol. 5(3), pages 142-150.
  • Handle: RePEc:apb:jaterr:2019:p:142-150
    DOI: 10.20474/jater-5.3.5
    as

    Download full text from publisher

    File URL: https://tafpublications.com/platform/Articles/full-jater5.3.5.php
    Download Restriction: no

    File URL: https://tafpublications.com/gip_content/paper/Jater-5.3.5.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.20474/jater-5.3.5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bana, Sangram & Saini, R.P., 2017. "Identification of unknown parameters of a single diode photovoltaic model using particle swarm optimization with binary constraints," Renewable Energy, Elsevier, vol. 101(C), pages 1299-1310.
    2. Kyle Klein & Julian Neira, 2014. "Nelder-Mead Simplex Optimization Routine for Large-Scale Problems: A Distributed Memory Implementation," Computational Economics, Springer;Society for Computational Economics, vol. 43(4), pages 447-461, April.
    3. Gabriele Lillacci & Mustafa Khammash, 2010. "Parameter Estimation and Model Selection in Computational Biology," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, Zhuo & Zhao, Yiman & Tang, Shiqing & Sun, Yize, 2020. "An efficient datasheet-based parameters extraction method for two-diode photovoltaic cell and cells model," Renewable Energy, Elsevier, vol. 153(C), pages 1174-1182.
    2. Arabshahi, M.R. & Torkaman, H. & Keyhani, A., 2020. "A method for hybrid extraction of single-diode model parameters of photovoltaics," Renewable Energy, Elsevier, vol. 158(C), pages 236-252.
    3. Abbassi, Rabeh & Abbassi, Abdelkader & Jemli, Mohamed & Chebbi, Souad, 2018. "Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 453-474.
    4. Alireza Yazdani & Lu Lu & Maziar Raissi & George Em Karniadakis, 2020. "Systems biology informed deep learning for inferring parameters and hidden dynamics," PLOS Computational Biology, Public Library of Science, vol. 16(11), pages 1-19, November.
    5. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    6. Joseph D Taylor & Samuel Winnall & Alain Nogaret, 2020. "Estimation of neuron parameters from imperfect observations," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-22, July.
    7. Dimitrios V Vavoulis & Volko A Straub & John A D Aston & Jianfeng Feng, 2012. "A Self-Organizing State-Space-Model Approach for Parameter Estimation in Hodgkin-Huxley-Type Models of Single Neurons," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-1, March.
    8. Li, Shuijia & Gong, Wenyin & Gu, Qiong, 2021. "A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    9. Sungho Shin & Ophelia S Venturelli & Victor M Zavala, 2019. "Scalable nonlinear programming framework for parameter estimation in dynamic biological system models," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-29, March.
    10. Agus Hartoyo & Peter J Cadusch & David T J Liley & Damien G Hicks, 2019. "Parameter estimation and identifiability in a neural population model for electro-cortical activity," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-27, May.
    11. Afnizanfaizal Abdullah & Safaai Deris & Mohd Saberi Mohamad & Sohail Anwar, 2013. "An Improved Swarm Optimization for Parameter Estimation and Biological Model Selection," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-16, April.
    12. Li, Chenxi & Yang, Yongheng & Spataru, Sergiu & Zhang, Kanjian & Wei, Haikun, 2021. "A robust parametrization method of photovoltaic modules for enhancing one-diode model accuracy under varying operating conditions," Renewable Energy, Elsevier, vol. 168(C), pages 764-778.
    13. Takanori Hasegawa & Rui Yamaguchi & Masao Nagasaki & Satoru Miyano & Seiya Imoto, 2014. "Inference of Gene Regulatory Networks Incorporating Multi-Source Biological Knowledge via a State Space Model with L1 Regularization," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-19, August.
    14. Se Ho Park & Seokmin Ha & Jae Kyoung Kim, 2023. "A general model-based causal inference method overcomes the curse of synchrony and indirect effect," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Yong-Jun Shin & Ali H Sayed & Xiling Shen, 2012. "Adaptive Models for Gene Networks," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-6, February.
    16. Guojiang Xiong & Jing Zhang & Dongyuan Shi & Xufeng Yuan, 2019. "Application of Supply-Demand-Based Optimization for Parameter Extraction of Solar Photovoltaic Models," Complexity, Hindawi, vol. 2019, pages 1-22, November.
    17. González Javier & Vujačić Ivan & Wit Ernst, 2013. "Inferring latent gene regulatory network kinetics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(1), pages 109-127, March.
    18. Zarifeh Heidary & Jafar Ghaisari & Shiva Moein & Shaghayegh Haghjooy Javanmard, 2020. "The double-edged sword role of fibroblasts in the interaction with cancer cells; an agent-based modeling approach," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-14, May.
    19. Chennoufi, Khalid & Ferfra, Mohammed & Mokhlis, Mohcine, 2021. "An accurate modelling of Photovoltaic modules based on two-diode model," Renewable Energy, Elsevier, vol. 167(C), pages 294-305.
    20. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:apb:jaterr:2019:p:142-150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: A/Professor Akbar A. Khatibi (email available below). General contact details of provider: https://tafpublications.com/platform/published_papers/10 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.